Paper | Title | Page |
---|---|---|
MO6RFP033 | Development of a Li+ Alumino-Silicate Ion Source | 426 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target*. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to {10}00-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements of high ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight. *J.J. Barnard et al., Nuclear Instruments and Methods in Physics Research A 577 (2007) 275283. |
||
TU6PFP041 | Fast Pulsing Neutron Generators for Security Application | 1375 |
|
||
Funding: This work is supported by NA22 of NNSA under the Department of Energy contract No. DE-AC02-05CH11231. Active neutron interrogation has been demonstrated to be an effective method of detecting shielded fissile material. A fast fall-time/fast pulsing neutron generator is needed primarily for differential die-away technique (DDA) interrogation systems. A compact neutron generator, currently being developed in Lawrence Berkeley National Laboratory, employs an array of 0.25-mm-dia apertures (instead of one 5-mm-dia aperture) such that gating the beamlets can be done with low voltage and a small gap to achieve sub-microsecond ion beam fall time and low background neutrons. The system will aim at both high and low beam current applications. We have designed and fabricated an array of 16 apertures (4x4) for a beam extraction experiment. Our preliminary results showed that, using a gating voltage of less than 800 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 ms at various beam energies ranging between 200 eV to 600 eV. More experimental results with an array of 20×20 apertures will be presented. |