A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kuriki, M.

Paper Title Page
MO6RFP064 Stacking Simulations for Compton Positron Sources of Future Linear Colliders 512
 
  • F. Zimmermann, Y. Papaphilippou, L. Rinolfi, A. Vivoli
    CERN, Geneva
  • F. Antoniou
    National Technical University of Athens, Zografou
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • T. Omori, J. Urakawa
    KEK, Ibaraki
  • A. Variola
    LAL, Orsay
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

The Compton positron source of a future linear collider must obtain the target bunch population by accumulating a large number of positron packets, arriving either in a number of bursts from a “Compton ring”, with intermediate damping of the scattering electron beam, or quasi-continually from a “Compton energy recovery linac”. We present simulation results for the longitudinal stacking of Compton positrons in the ILC damping ring and the CLIC pre-damping ring, reporting parameter optimization, stacking efficiency, possible further improvements, and outstanding questions.

 
MO6RFP068 ERL Parameters for Compton Polarized Positron Sources 524
 
  • A. Variola, C. Bruni, I. Chaikovska, O. Dadoun
    LAL, Orsay
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • T. Omori, J. Urakawa
    KEK, Ibaraki
  • L. Rinolfi, A. Vivoli, F. Zimmermann
    CERN, Geneva
 
 

One of the main challenges for the future linear colliders projects (ILC and CLIC) is to design an efficient positron source taking into account the constraints imposed by the target heating. At present, different schemes have been analysed to produce high energy gammas and to convert them in an amorphous target. One of them considers the possibility to boost the energy of the backscattered photons of a laser pulse by Compton effect. This method is very attractive since the source is independent from the main Linac and since the photon helicity is conserved in Compton scattering and subsequently transferred to the produced pairs. This allows the physics experiments disposing of both positron and electron polarised sources. Different schemes have been proposed to provide the electron beam for the Compton collisions. taking into account the constraint imposed by the low value of the Thomson cross section. One of the explored possibilities is to design an ERL with relatively low repetition frequency, high charge per pulse and then to stack the produced positrons in an accumulation ring. Different considerations on this scheme will be illustrated and the main constraints discussed.

 
MO6RFP069 A Study of Lifetime of GaAs Photocathode for High Brightness Electron Source 527
 
  • C. Shonaka, H. Higaki, K. Ito, D. Kubo, M. Kuriki, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • T. Konomi, T. Nakanishi, S. Okumi, M. Yamamoto
    Nagoya University, Nagoya
 
 

High brightness electron source is a key technology for future projects based on advanced accelerators. Although GaAs photo-cathode is very attractive because it can generate highly polarized and extremely high brightness electron beam, the limited operational life time is a technical issue. In Hiroshima University, a photo-cathode test bench is implemented for various studies of GaAs photo-cathode. Super high vacuum, 9E-9Pa, was achieved and the cathode was successfully activated by processes of heat cleaning technique and the alternate evaporation of Cs and oxygen. The quantum efficiency and its lifetime were investigated as a function of cathode temperature, simulating temperature rise by the high power cathode drive laser. Wavelength dependence was also investigated.

 
MO6RFP074 Design and Fabrication of a 500-kV Photocathode DC Gun for ERL Light Sources 542
 
  • R. Hajima
    JAEA/FEL, Ibaraki-ken
  • Y. Honda, T. Miyajima, T. Muto, M. Yamamoto
    KEK, Ibaraki
  • H. Iijima, R. Nagai, N. Nishimori
    JAEA/ERL, Ibaraki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • T. Nakanishi, S. Okumi
    Nagoya University, Nagoya
 
 

A 500-kV, 10-mA photocathode DC gun has been designed and is now under fabrication by the collaboration efforts of JAEA, KEK, Hiroshima Univ. and Nagoya Univ. The Cockcroft-Walton generator and the ceramic insulator are installed upright in the SF6 tank. We have adopted a multiple-stacked cylindrical ceramic insulator, because this type of ceramic insulator has shown good stability and robustness at the 200-kV Nagoya polarized gun and the 250-kV JAEA FEL gun. All the vacuum chambers are made of titanium alloy with very low out-gassing. The Cockcroft-Walton generator, the ceramic insulator, the vacuum chambers will be fabricated by April 2009 and a high-voltage test will be started soon later. Up-to-date status of the gun development will be presented in detail.

 
TU5RFP081 Status of the Energy Recovery Linac Project in Japan 1278
 
  • S. Sakanaka, M. Akemoto, T. Aoto, D.A. Arakawa, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, M. Isawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, Y. Kobayashi, Y. Kojima, T. Matsumoto, H. Matsushita, S. Michizono, T.M. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, R. Takai, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, K. Watanabe, M. Yamamoto, S. Yamamoto, Y. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E.J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • S. Matsuba
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
 
 

Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL.

 
WE6RFP065 The CLIC Positron Source Based on Compton Schemes 2945
 
  • L. Rinolfi, F. Antoniou, H.-H. Braun, Y. Papaphilippou, D. Schulte, A. Vivoli, F. Zimmermann
    CERN, Geneva
  • E.V. Bulyak, P. Gladkikh
    NSC/KIPT, Kharkov
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • O. Dadoun, P. Lepercq, R. Roux, A. Variola, Z.F. Zomer
    LAL, Orsay
  • W. Gai, W. Liu
    ANL, Argonne
  • T. Kamitani, T. Omori, J. Urakawa
    KEK, Ibaraki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
 
 

The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by Compton process. Compton backscattering happens in a so-called "Compton ring" where an electron beam of 1.06 GeV interacts with a powerful laser beam amplified in an optical resonator. The circularly-polarized gamma rays are sent on to a target, producing pairs of longitudinally polarized electrons and positrons. An Adiabatic Matching Device maximizes the capture of the positrons. A normal-conducting 2 GHz Linac accelerates the beam up to 2.424 GeV before injection into the Pre-Damping Ring (PDR). The nominal CLIC bunch population is 4.4x109 particles per bunch. Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a "Compton Energy Recovery Linac" where a quasi-continual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three different options.