A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kuo, K.C.

Paper Title Page
TU6RFP014 The EMI Reduction of Pulsed Magnets in NSRRC 1559
 
  • Y.-H. Liu, C.K. Chan, C.-H. Chang, J.-R. Chen, K.C. Kuo, C.-S. Yang
    NSRRC, Hsinchu
 
 

The purpose of this paper is to reduce the Electromagnetic Interference (EMI) from kicker and its pulsed power supply. Analysis of conducted and radiated EMI is the beginning mission. Different frequency range of radiated EMI was measured by different sensors. A hybrid shielding method was used to test reduction of radiated EMI. The copper and μ-metal enclosure was used on kicker magnet to prevent the radiated EMI. The reduction of electromagnetic field showed the effect of different material. Besides, the conducted EMI was also tested and eliminated by adding grounding routs. For decreasing grounding noise to other systems, the individual grounding bus was installed. The experimental results showed significant effect. In the future, TPS (Taiwan Photon Source) injection magnets will design higher performance, lower EMI than TLS (Taiwan Light Source). Therefore reducing and eliminating the interference of electromagnetic waves will be a very important issue. All the EMI prevention schemes will implement in the new project.

 
WE6RFP052 Power Saving Schemes in the NSRRC 2917
 
  • J.-C. Chang, Y.-C. Chung, K.C. Kuo, J.-M. Lee, Y.-C. Lin, C.Y. Liu, A. Sheng, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu
 
 

To cope with increasing power cost and to confront huge power consumption of the Taiwan Photon Source (TPS) in the future, we have been conducting several power saving schemes since 2006 in the National Synchrotron Radiation Research Center (NSRRC). Those power saving schemes include optimization of chiller operation, air conditioning system improvement, power factor improvement and the lighting system improvement.