Paper | Title | Page |
---|---|---|
WE5RFP001 | Current Design Status of TPS 3 GeV Booster Synchrotron | 2258 |
|
||
The design work of the concentric booster for Taiwan Photon Source (TPS) has been well in progress. The circumference is 496.8 m. It consists of modified FODO cells with defocusing quadrupole and sextupole fields built in bending magnets, and combined function focusing quadrupoles with imbedded focusing sextupole. The emittance is about 10 nm-rad at 3 GeV. Several modifications on the structure were made to improve the beam dynamics behaviors. Good dynamic aperture and nonlinear behavior as well as good tunability are shown. The efficient closed orbit correction scheme is presented. The repetition rate is 3 Hz, and the eddy current effect is also discussed. |
||
WE5RFP002 | Design Status of Transfer Lines in TPS | 2261 |
|
||
The booster design of Taiwan Photon Source(TPS) has been significantly revised. Therefore, the transfer line from linac to booster(LTB) and the one from booster to storage ring(BTS) have been redesigned accordingly. The design of LTB transfer line has been simplified to reduce the number of magnets. The length of BTS transfer line has been greatly reduced. The design goal of transfer lines is to achieve high efficiency for beam injection. The status of current progress will be reported. |
||
WE5RFP006 | Progress Report of the TPS Lattice Design | 2273 |
|
||
A 3 GeV synchrotron light source is planned to be built at the existing site of NSRRC campus. The project is called the Taiwan Photon Source (TPS). It will provide x-ray photon beam with brilliance several orders higher than the one generated by the existing 1.5 GeV synchrotron. The design issues of accelerator lattice for the 3 GeV storage ring and booster injector will be presented. These issues cover the properties of linear and nonlinear beam dynamics, the optimization of dynamic aperture and momentum acceptance, collective beam instabilities and lifetime issues, the effects caused by various error sources and technical measures to suppress these error effects, etc. |