Paper | Title | Page |
---|---|---|
TU6RFP036 | Beam Extraction Using Strip-Line Kicker at KEK-ATF | 1620 |
|
||
The kicker of the damping ring for the International linear collider(ILC) requires fast rise/fall times(3 or 6ns) and high repetition rate(3 MHz). A multiple strip-line kicker system is developing to realize the specification*. We present results of the beam test at KEK-ATF by the strip-line kicker**. The multi-bunch beam, which has 5.6ns bunch spacing in the damping ring, is extracted with 308ns duration. Two units of the strip-line electrodes are used to extract the beam. The scheme of the beam extraction is same as the kicker of the ILC. A bump orbit and an auxiliary septum magnet are used with the kicker to clear the geometrical restriction. *T. Naito et. al., Proc. of PAC07, pp2772-2274 |
||
FR1RAC05 | Update on Optics Modelling for the ATF Damping Ring at KEK | 4213 |
|
||
One of the goals of the Accelerator Test Facility (ATF) at KEK is to demonstrate ultra-low vertical emittance for linear colliders. Highly precise correction of the vertical dispersion and betatron coupling will be needed to achieve the target of 2 pm (which will be required for ILC). Optics correction and tuning must be supported by an accurate model, which can be developed from a variety of beam measurements, including orbit response to dipole kicks, beta functions at the quadrupoles, etc. Here, we report experimental data and the status of the model and low-emittance tuning. |
||
|
||
FR5PFP021 | Plans and Progress towards Tuning the ATF2 Final Focus System to Obtain a 35nm IP Waist | 4353 |
|
||
Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515 Using a new extraction line currently being commissioned, the ATF2 experiment plans to test a novel compact final focus optics design using a local chromaticity correction scheme, such as could be used in future linear colliders*. Using a 1.3 GeV beam of ~30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical IP waist of 35nm. We discuss our planned strategy, implementation details and early experimental results for tuning the ATF2 beam to meet the primary goal. These optics require uniquely tight tolerances on some magnet strengths and positions, we discuss efforts to re-match the optics to meet these requirements using high-precision measurements of key magnet elements. We simulated in detail the tuning procedure using several algorithms and different code implementations for comparison from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within 10% of the design optics value in at least 90% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks. *"ATF2 Proposal", ATF2 Collaboration (Boris Ivanovich Grishanov et al.)., KEK-REPORT-2005-2, Aug 23, 2005. |
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|