A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kramer, T.

Paper Title Page
TU6RFP024 Initial Results from Beam Commissioning of the LHC Beam Dump System 1584
 
  • B. Goddard, I.V. Agapov, E. Carlier, L. Ducimetière, E. Gallet, M. Gyr, L.K. Jensen, O.R. Jones, V. Kain, T. Kramer, M. Lamont, M. Meddahi, V. Mertens, T. Risselada, J.A. Uythoven, J. Wenninger, W.J.M. Weterings
    CERN, Geneva
 
 

Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

 
TU6RFP026 Beam Commissioning of Injection into the LHC 1590
 
  • V. Mertens, I.V. Agapov, B. Goddard, M. Gyr, V. Kain, T. Kramer, M. Lamont, M. Meddahi, J.A. Uythoven, J. Wenninger
    CERN, Geneva
 
 

The LHC injection tests and first turn beam commissioning took place in late summer 2008, after detailed and thorough preparation. The beam commissioning of the downstream sections of the SPS-to-LHC transfer lines and the LHC injection systems is described. The details of the aperture measurements in the injection regions are presented together with the performance of the injection related equipment. The measured injection stability is compared to the expectations. The operational issues encountered are discussed.

 
TU6RFP031 LHC Beam Dump System - Consequences of Abnormal Operation 1605
 
  • T. Kramer, B. Goddard, J.A. Uythoven
    CERN, Geneva
 
 

The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed.

 
TH6PFP039 Beam Loss Control for the Unstripped Ions from the PS2 Charge Exchange Injection 3790
 
  • W. Bartmann, J. Barranco, M. Benedikt, B. Goddard, T. Kramer, Y. Papaphilippou, H. Vincke
    CERN, Geneva
 
 

Control of beam losses is an important aspect of the H- injection system for the PS2, a proposed replacement of the CPS in the CERN injector complex. H- ions may pass the foil unstripped or be partially stripped to excited H0 states which may be stripped in the subsequent strong-field chicane magnet. Depending on the choice of the magnetic field, atoms in the ground and first excited states can be extracted and dumped. The conceptual design of the waste beam handling is presented, including local collimation and the dump line, both of which must take into account the divergence of the beam from stripping in fringe fields. Beam load estimates and activation related requirements of the local collimators and dump are briefly discussed.