A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Koda, S.

Paper Title Page
WE5RFP012 Analysis of the Orbit Response Matrix and Correction of Beta Function at the SAGA Light Source 2291
 
  • Y. Iwasaki, T. Kaneyasu, S. Koda, Y. Takabayashi
    SAGA, Tosu
  • H. Ohgaki
    Kyoto IAE, Kyoto
 
 

The procedure of accelerator modeling using orbit response matrix fitting is well known and widely adopted at many light sources, we also examined the model fitting to diagnose optics and to restore the periodicity of the storage ring optics. In the modeling procedure we used the tracking code TRACY2, because it can calculate the orbit response matrix including energy offset caused by the dipole kick. The multi-parameter fitting was carried out by using SVD algorism implemented in the Labview mathematical package. In the fitting procedure, we fixed a steering magnet field to the value obtained from the orbit measurement using screen monitor to avoid explicit solution between the steering strengths and the BPM gains. By adopting the orbit response matrix fitting, it was found that the quadrupole strength is about 3-5% larger than the calculated value obtained from magnetic measurement data and output current of the power supply. In the conference, we will report on the result of the modeling procedure and its application to the optics correction.

 
WE5RFP014 Present Status of Synchrotron Radiation Facility SAGA-LS 2294
 
  • T. Kaneyasu, Y. Iwasaki, S. Koda, Y. Takabayashi
    SAGA, Tosu
 
 

SAGA Light Source (SAGA-LS) is a 1.4 GeV synchrotron light source consisting of an injector linac and a storage ring of 75.6 m circumference. The SAGA-LS has been routinely operated with low emittance of 25 nm-rad since its official opening in February 2006. Machine improvements, including upgrades on the control system and grid pulsar for the injector linac, construction of a new septum magnet and beam monitor systems, and current increase from 100 to 200 mA, have been made in the past years. Along with the accelerator improvements, installation and development of new insertion devices have started. The SAGA-LS ring has six 2.5-m long straight sections available for insertion devices. A planar type undulator of Saga University is in operation. In addition, an APPLE-2 type undulator producing variably polarized light has been installed during the winter shutdown of 2008. In order to address user demand for high flux hard x-rays, design of a superconducting wiggler is under discussion. Construction of an experimental setup to produce MeV photons by the laser Compton scattering is in progress, preparing for precise beam energy measurement and user experiments in future.