A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kim, S.H.

Paper Title Page
MO6PFP078 Status of R&D on a Superconducting Undulator for the APS 313
 
  • Y. Ivanyushenkov, K.D. Boerste, T.W. Buffington, C.L. Doose, Q.B. Hasse, M.S. Jaski, M. Kasa, S.H. Kim, R. Kustom, E.R. Moog, D.L. Peters, E. Trakhtenberg, I. Vasserman
    ANL, Argonne
  • A.V. Makarov
    Fermilab, Batavia
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


An extensive R&D program is underway at the Advanced Photon Source (APS) with the aim of developing a technology capable of building a 2.4-m-long superconducting planar undulator for APS users. The initial phase of the project concentrates on using a NbTi superconductor and includes magnetic modeling, development of manufacturing techniques for the undulator magnet, and design and test of short prototypes. The current status of the R&D phase of the project is described in this paper.

 
MO6PFP081 Magnetic Field Measurement System for Superconducting Undulators 321
 
  • S.H. Kim, C.L. Doose, Y. Ivanyushenkov
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The baseline configuration of the proposed International Linear Collider includes superconducting helical undulators as a scheme to produce positrons. This paper presents a conceptual design of the magnetic field measurement system for helical undulators with the undulator axis in a horizontal direction at liquid helium temperature. The system consists of a cryomodule and a linear stage unit with a travel length of approximately 3.5 m. The linear stage unit provides the motion control for the Hall probe housing, which is connected to a small-diameter carbon fiber rod inside bellows-flange connections. Stainless steel bellows are at the same vacuum pressure as the cold mass in the cryomodule. A linear encoder is used for motion control of the stage, but precise position measurement of the Hall probe relies on the laser interferometer system.

 
WE5PFP094 Phase Amplitude Detection (PAD) and Phase Amplitude Control (PAC) for PXFEL 2231
 
  • W.H. Hwang, M.-H. Chun, K.M. Ha, Y.J. Han, D.T. Kim, H.-G. Kim, S.H. Kim
    PAL, Pohang, Kyungbuk
  • R. Akre
    SLAC, Menlo Park, California
 
 

In PAL, We are preparing the 3GeV Linac by upgrading the present 2.5GeV Linac and new 10GeV PxFEL project. The specification of the beam energy spread and rf phase is tighter than PLS Linac. In present PLS 2.5 GeV Linac, the specifications of the beam energy spread and rf phase are 0.6%(peak) and 3.5 degrees(peak) respectively. And the output power of klystron is 80 MW at the pulse width of 4 microseconds and the repetition rate of 10 Hz. In PxFEL, the specifications of the beam energy spread and rf phase are 0.1%(rms) and 0.1 degrees(rms) respectively. We developed the modulator DeQing system for 3GeV linac and PxFEL. And the phase amplitude detection system(PAD) and phase amplitude control(PAC) system is needed to improve the rf stability. This paper describes the microwave system for the PxFEL and the PAD and PAC system.

 
TH5RFP070 Nanometer Resolution Beam Position Monitor for the ATF2 Interaction Point Region 3603
 
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • R. Ainsworth, S.T. Boogert, G.E. Boorman
    Royal Holloway, University of London, Surrey
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • A. Lyapin, B. Maiheu, M. Wing
    UCL, London
  • J. May, D.J. McCormick, S. Molloy, J. Nelson, T.J. Smith, G.R. White
    SLAC, Menlo Park, California
  • S. Shin
    Fermilab, Batavia
  • D. Son
    CHEP, Daegu
  • D.R. Ward
    University of Cambridge, Cambridge
 
 

The ATF2 international collaboration is intending to demonstrate nanometer beam sizes required for the future Linear Colliders. The position of the electron beam focused down at the end of the ATF2 extraction line to a size as small as 35 nm has to be measured with nanometer resolution. For that purpose a special Interaction Point(IP) beam position monitor (BPM) was designed. In this paper we report on the features of the BPM and electronics design providing the required resolution. We also consider the results obtained with BPM triplet which was installed in the ATF beamline and the first data from ATF2 commissioning runs.

 
FR1RAI03 ATF2 Commissioning 4205
 
  • A. Seryi, J.W. Amann, P. Bellomo, B. Lam, D.J. McCormick, J. Nelson, J.M. Paterson, M.T.F. Pivi, T.O. Raubenheimer, C.M. Spencer, M.-H. Wang, G.R. White, W. Wittmer, M. Woodley, Y.T. Yan, F. Zhou
    SLAC, Menlo Park, California
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Apsimon, B. Constance, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • S. Araki, A.S. Aryshev, H. Hayano, Y. Honda, K. Kubo, T. Kume, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, J. Urakawa, K. Yokoya
    KEK, Ibaraki
  • S. Bai, J. Gao
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier, C. Rimbault
    LAL, Orsay
  • G.A. Blair, S.T. Boogert, V. Karataev, S. Molloy
    Royal Holloway, University of London, Surrey
  • B. Bolzon, N. Geffroy, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • G.B. Christian
    ATOMKI, Debrecen
  • J.-P. Delahaye, D. Schulte, R. Tomás, F. Zimmermann
    CERN, Geneva
  • E. Elsen
    DESY, Hamburg
  • E. Gianfelice-Wendt, M.C. Ross, M. Wendt
    Fermilab, Batavia
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • J.Y. Huang, W.H. Hwang, S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • Y. Iwashita, T. Sugimoto
    Kyoto ICR, Uji, Kyoto
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • A. Lyapin
    UCL, London
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, Graduate School of Science, Sendai
  • A. Scarfe
    UMAN, Manchester
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

 

slides icon

Slides

 
FR5REP080 Commissioning Status of 10-MeV Intense Electron Linac 4965
 
  • S.H. Kim, M.-H. Cho, W. Namkung, H.R. Yang
    POSTECH, Pohang, Kyungbuk
  • S.D. Jang, S.J. Park, Y.G. Son
    PAL, Pohang, Kyungbuk
  • J.-S. Oh
    NFRI, Daejon
 
 

Funding: This work is supported by KAPRA and POSTECH Physics BK21 Program.


An intense L-band electron linac is now being commissioned at ACEP (Advanced Center for Electron-beam Processing in Cheorwon, Korea) for irradiation applications. It is capable of producing 10-MeV electron beams with the 30-kW average beam power. For a high-power capability, we adopted the traveling-wave structure operated with the 2π/3-mode at 1.3 GHz. The structure is powered by a 25-MW pulsed klystron with 60-kW average RF power. The RF pulse length is 8 μs while the beam pulse length is 7 μs due to the filling time in the accelerating structure. The accelerating gradient is 4.2 MV/m at the beam current of 1.45 A which is the fully beam-loaded condition. In this paper, we present details of the accelerator system and commissioning status.