Paper | Title | Page |
---|---|---|
WE6RFP072 | Density Transition Measurement for the Electron Injection in Laser Wakefield Accelerator | 2961 |
|
||
The electron injection into the acceleration phase of the laser wakefield accelerator(LWFA) the key issues for the stable operation of the LWFA. For the controlled electron injection, a sharp downward electron density transition is one candidate. When the laser pulse pass the sharp electron density transition, the electron from the high density region is injected into the acceleration phase. For this injection scheme, a very sharp electron density transition, the distance of the density change must be shorter than the plasma wavelength, is needed. A shock structure of plamsa generated at the gas target is one candidate for such a sharp electron density tarnsition structure. To find out the feasible condition of the density structure, the electorn density was measured by an interferometer with different time. A 200 ps, 100 mJ laser was used to generated plasma. A frequency doubled femto-second laser was used as a probe beam. The measured electron density structure which is compared with a 2D PIC simulation, indicates that feasible condition can be generated 1.2 ns after the laser pulse. This electron density structure will be used for the laser wakefield acceleration experiments. |
||
WE6RFP073 | Controlled Injection in the Sharp Phase Mixing Region of LWFA | 2964 |
|
||
Funding: Korea Electrotechnology Research Institute (KERI) To generate the good quality electron bunch, stable fast injection is very important issue in the laser wakefield accelerator(LWFA). One of the self-injection methods is the wave breaking*. In this scheme, the density transition scale length is much larger than plasma skin depth. After a new self-injection mechanism using the sharp density transition scheme was proposed**, the experiment for the generation of the plasma shock structure have been conducted***. In this scheme, while one can reduce the wave breaking, the electron can be injected effectively using a phase mixing. Thus, the sharp density transition scheme is promising candidate method for the more stable generation of good quality electron bunch. In this scheme, the main issue is that the finding optimum conditions in which the injected electrons only in the first period of laser wake wave are accelerated further. In this paper, optimum conditions of sharp density transition scheme have been studied using Particle-In-Cell simulations. And the transverse parabolic profile is used to increase the beam quality. Throughout the extensive simulation work, the optimum conditions for the experiments at KERI is presented. *S. Bulanov, et. al., Phys. Rev. E, 58, R5257 (1998) |