A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kim, H.-G.

Paper Title Page
WE5PFP094 Phase Amplitude Detection (PAD) and Phase Amplitude Control (PAC) for PXFEL 2231
 
  • W.H. Hwang, M.-H. Chun, K.M. Ha, Y.J. Han, D.T. Kim, H.-G. Kim, S.H. Kim
    PAL, Pohang, Kyungbuk
  • R. Akre
    SLAC, Menlo Park, California
 
 

In PAL, We are preparing the 3GeV Linac by upgrading the present 2.5GeV Linac and new 10GeV PxFEL project. The specification of the beam energy spread and rf phase is tighter than PLS Linac. In present PLS 2.5 GeV Linac, the specifications of the beam energy spread and rf phase are 0.6%(peak) and 3.5 degrees(peak) respectively. And the output power of klystron is 80 MW at the pulse width of 4 microseconds and the repetition rate of 10 Hz. In PxFEL, the specifications of the beam energy spread and rf phase are 0.1%(rms) and 0.1 degrees(rms) respectively. We developed the modulator DeQing system for 3GeV linac and PxFEL. And the phase amplitude detection system(PAD) and phase amplitude control(PAC) system is needed to improve the rf stability. This paper describes the microwave system for the PxFEL and the PAD and PAC system.

 
WE6RFP054 Design and Performance of Resonance Frequency Control Cooling System of PEFP DTL 2920
 
  • K.R. Kim, H.-G. Kim
    PAL, Pohang, Kyungbuk
  • Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon
 
 

Funding: Work supported by PEFP and MEST in Korea


The objectives of the cooling system of Proton Engineering Frontier Project (PEFP) Drift Tube Linac (DTL) operated in combination with the low-level RF system (LLRF) are to regulate the resonant frequency of the drift tube cavities of 350 MHz. To provide an effective means of bringing the PEFP DTL up for a resonance condition within ±5 kHz, the prototype of the cooling system has been designed and fabricated to investigate the performance features for the servo stabilization of the cavity resonant frequency. As a result, it is estimated that the resonant frequency could be regulated less than ±1 kHz with this proposed feedback temperature controlled cooling system although introducing a little nonlinear features as the reference operating temperature changes. This report describes the design and performance test results of a cooling system, including the size of water pumping skid components and the temperature control scheme.