A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kewisch, J.

Paper Title Page
MO6RFP043 Design of an SRF Gun for Polarized Electron Beams 454
 
  • H. Bluem, D. Holmes, T. Schultheiss
    AES, Medford, NY
  • I. Ben-Zvi, A. Burrill, J. Kewisch, D. Pate, T. Rao, R.J. Todd, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York
 
 

Funding: AES is funded under DOE SBIR contract #DE-FG02-06ER84450. BNL work is performed under DOE contract #DE-AC02-98CH10886.


The use of an RF electron gun with a magnetized cathode in place of a DC gun for ILC may reduce the requirements for emittance damping rings. Maintaining adequate lifetime of the necessary cathode material requires vacuum levels in the 10-11 torr range. While vacuum levels around the 10-9 torr range are common in a normal conducting RF gun, the cryogenic pumping of the cavity walls of a superconducting RF (SRF) gun may maintain vacuum in the range needed for GaAs cathode longevity. Advanced Energy Systems, Inc. is collaborating with Brookhaven National Laboratory to investigate the generation of polarized electron beams using a SRF photocathode gun. The team is developing an experiment to study the quantum lifetime of a GaAs cathode in a SRF cavity and investigate long term cavity performance while integrated with a cesiated GaAs cathode*. In addition to the experimental investigation, a design is being developed that is compatible with the production of high aspect ratio polarized electron beams. The mechanical and physics aspects of this design will be discussed.


*J. Kewisch, et. al., Presentation at PAC09.

 
MO6RFP049 An Experiment to Test the Viability of a Gallium-Arsenide Cathode in a SRF Electron Gun 470
 
  • J. Kewisch, I. Ben-Zvi, A. Burrill, D. Pate, T. Rao, R.J. Todd, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York
  • H. Bluem, D. Holmes, T. Schultheiss
    AES, Medford, NY
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


Gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10-11 torr or better, so that the cathode is not destroyed by ion back bombardment. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun.

 
TU2GRC03 First Observation of an Electron Beam Emitted from a Diamond Amplified Cathode 691
 
  • X. Chang, I. Ben-Zvi, A. Burrill, J. Kewisch, E.M. Muller, T. Rao, J. Smedley, E. Wang, Y.C. Wang, Q. Wu
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


We observed, for the first time, the emission of an electron beam from a hydrogenated diamond in the emission mode on a phosphor screen. Our experimental device is based on the following concept: primary electrons of a few keV energy generate a large number of secondary electron-hole pairs in a diamond. The secondary electrons are transmitted to the opposite face of the diamond, which is hydrogenated, and emitted from its negative-electron-affinity (NEA) surface. Under our present conditions, the maximum emission gain of the primary electron is about 40, and the bunch charge is 50pC/0.5mm2. Our achievement led to new understanding of the hydrogenated surface of the diamond. We propose an electron-trapping mechanism near the hydrogenated surface. The probability of electron trapping in our tests is less than 70%. The hydrogenated diamond was demonstrated to be extremely robust. After exposure to air for days, the sample exhibited no observable degradation in emission.

 

slides icon

Slides

 
TU5PFP033 BNL 703 MHz SRF Cryomodule Demonstration 891
 
  • A. Burrill, I. Ben-Zvi, R. Calaga, T. D'Ottavio, L.R. Dalesio, D.M. Gassner, H. Hahn, L.T. Hoff, A. Kayran, J. Kewisch, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, C. Schultheiss, L. Smart, K. Smith, T.N. Tallerico, J.E. Tuozzolo, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York
 
 

This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary VTA cavity testing, carried out at Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1x1010, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines.

 
FR5PFP069 Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P 4470
 
  • A.E. Candel, A.C. Kabel, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman
    SLAC, Menlo Park, California
  • I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
 
 

Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725.


SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.