Paper | Title | Page |
---|---|---|
MO6RFP034 | The EBIT Charge State Booster for Exotic Beam Reacceleration at MSU | 429 |
|
||
The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is implementing a system to reaccelerate rare isotope beams from projectile fragmentation to energies of about 3 MeV/u. The reacceleration of stopped radioactive beams from projectile fragmentation at the NSCL/MSU makes use of charge state breeding in an Electron Beam Ion Trap (EBIT) to provide a compact and cost efficient system layout of MSU’s ReA3. The MSU EBIT breeder device will provide a high electron beam current density of about 104 A/cm2 making it well suited to rapidly increase the charge state of short-lived isotopes within tens of milliseconds or less. In addition, the breeder is optimized to provide a high storage capacity, a high beam acceptance and uses a continuous injection and beam accumulation scheme explicitly, which makes it unique. To match the beam of singly charged rare isotope ions into the acceptance of the EBIT and to analyze and purify the EBIT beams, a sophisticated beam line and diagnostic system is required. The present paper will present an overview and the status of the ReA3 EBIT. |
||
MO6RFP035 | Performance Investigation of the NSCL 18 GHz Superconducting ECR Ion Source SUSI | 432 |
|
||
Funding: Supported by the National Science Foundation under grant PHY-0110253 The construction of the SUperconducting Source for Ions (SUSI), a 3rd generation Superconducting ECR ion source for the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has been completed and commissioning of the source is ongoing. SUSI operates primarily at 18GHz and is scheduled to replace the 6.4 GHz SC-ECR for injection in the coupled cyclotron later this year. Excellent performances during commissioning have been obtained with SUSI for the production of highly charged ions for both metallic and gas elements and will be presented. A set of six solenoid coils gives SUSI the capability to modify the length and the position of the resonant zone and also to adjust the gradient of the axial magnetic field near the resonance. The impact of this flexible magnetic field profile on the ion beam production and the charge state distribution is actively studied and will be discussed. Emittance measurements of the ion beam extracted from SUSI have been performed and will also be presented. |
||
WE4PBC05 | The HITRAP Decelerator Linac at GSI | 1961 |
|
||
Funding: European Commission; contract number HPRI-CT-2001-50036 (HITRAP) German Ministry for Education and Research (BMBF; contract number 06 FY160I Deceleration of heavy, highly charged ions from the ion storage ring ESR of the GSI accelerator facility with an rf-linear decelerator will provide ions up to bare uranium almost at rest for cutting edge experiments in atomic and nuclear physics. For this unique approach the beam has to be prepared well by electron cooling in the ESR to account for a 26 time increase of the transverse emittance during the following deceleration. An interdigital H-type (IH) structure and a radio-frequency quadrupole (RFQ) structure are operated in inverse to decelerate first from 4 MeV/u to 0.5 MeV/u and then to 6 keV/u. The quasi-continuous beam from the ESR is adapted, by using a double drift buncher, to match the longitudinal acceptance of the IH. Downstream from the IH-structure the 0.5 MeV/u beam is then fit with a spiral re-buncher to the RFQ, which finally decelerates the ions to 6 keV/u. First commissioning beam times have shown that the bunching works well and ions have been decelerated to 0.5 MeV/u in the IH structure. Extensive measurements of transversal emittance before and after deceleration can now be compared to beam dynamics calculations. |
||
|
||
FR5PFP015 | An Achromatic Mass Separator Design for Ions from the EBIT Charge Breeder at the NSCL | 4341 |
|
||
Funding: This work was supported by Michigan State University and the National Science Foundation under grant PHY-0110253. The NSCL at Michigan State University (MSU) is implementing a system called the ReA3 to reaccelerate rare isotope beams from projectile fragmentation to energies of about 3 MeV/u. The re-acceleration system uses an Electron Beam Ion Trap (EBIT) to provide a compact and cost efficient system. We discuss the design parameters for a m/q separator that is to be used to separate highly charged ions from an EBIT type charge breeder. The separator is designed to accept ions at 12 keV/u with mass to charge ratios in the range of m/q = 2.5 to 5 amu. The goal is to separate selected rare isotope species from any residual ions before injecting them into the ReA3 linear accelerator system. Using ray tracing simulations with SIMION*, as well as higher order map calculations with COSY INFINITY**, the performance of the separator has been evaluated in terms of the expected mass resolution and overall acceptance. The separator consists of a magnetic sector and a series of electrostatic devices to obtain a first order achromatic tune. For comparison, similar performance values will be derived as those for a similar separator constructed at REX-ISOLDE***. *D.A. Dahl, Int. J. Mass Spectrom. Ion Processes 200, 3 (2000) . |