Paper | Title | Page |
---|---|---|
WE5PFP011 | PAMELA: Development of the RF System for a Non-Relativistic Non-Scaling FFAG | 2009 |
|
||
Funding: EP/E032869/1 AMELA (Particle Accelerator for MEdicaL Applications) is a newly developed fixed field accelerator, which has capability for rapid beam acceleration, which is interesting for practical applications such as charged particle therapy. PAMELA aims to design a particle therapy facility using Non-Scaling FFAG technology, with a target beam repetition rate of 1kHz, which is far beyond that of conventional synchrotron. To realize the repetition rate, the key component is rf acceleration system. The combination of a high field gradient and a high duty factor is a significant challenge. In this paper, options for the system and the status of their development are presented. |
||
WE6PFP092 | Feasibility of Injection/Extraction Systems for Muon FFAG Rings in the Neutrino Factory | 2718 |
|
||
Non-scaling FFAG rings have been proposed as a solution for muon acceleration in the Neutrino Factory. In order to achieve small orbit excursion and small time of flight variation, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on injection/extraction systems. The feasibility of injection/extraction is discussed and various implementations focusing on minimization of kicker/septum strength are presented. |
||
TH6PFP022 | An FFAG Transport Line for the PAMELA Project | 3741 |
|
||
The PAMELA project to design an accelerator for hadron therapy using non-scaling Fixed Field Alternating Gradient (NS-FFAG) magnets requires a transport line and gantry to take the beam to the patient. The NS-FFAG principle offers the possibility of a gantry much smaller, lighter and cheaper than conventional designs, with the added ability to accept a wide range of fast changing energies. This paper will build on previous work to investigate a transport line which could be used for the PAMELA project. The design is presented along with a study and optimisation of its acceptance. |
||
FR5PFP001 | PAMELA: Lattice Design and Performance | 4302 |
|
||
PAMELA (Particle Accelerator for MEdicaL Applications) is a design for a non-scaling Fixed Field Alternating Gradient accelerator facility for Charged Particle Therapy, using protons and light ions such as carbon to treat certain types of cancer. A lattice has been designed which constrains the variation of betatron tunes through acceleration and thus avoids integer resonance crossing and beam blow-up. This paper outlines the design and performance of this proposed PAMELA lattice. |
||
TH4GAC03 | PAMELA Overview: Design Goals and Principles | 3142 |
|
||
Funding: EPSRC EP/E032869/1 The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator. |
||
|