Paper | Title | Page |
---|---|---|
FR5REP100 | Coupling Resonance Qx-Qy=0 and Its Correction in Axial Injection Channel of the Cyclotron | 5014 |
|
||
In axial injection channels of FLNR JINR cyclotrons the axial symmetric ion beam is formed just after the analyzing bending magnet. This gives an opportunity to use for beam focusing at vertical part of the channel solenoidal magnetic lenses only. During the motion of intense axial symmetric beam in the longitudinal magnetic field of solenoids and cyclotron the transverse tunes Qx, Qy coincide. In this case the small disturbance of beam axial symmetry leads to excitation of coupling resonance Qx-Qy=0 due to beam self-fields. The influence of the resonance results in significant asymmetry of the transverse beam emittances. The magnitude of this asymmetry is evaluated within the framework of moments method and is in a good agreement with one obtained in the macro-particles simulation. The correction of resonance by means of the normal quadrupole lens is proposed. |
||
FR5REP101 | Screening of Optical Elements in C400 Axial Injection Beam Line | 5017 |
|
||
C400 is compact superconducting cyclotron for hadron therapy. The permissible level of the transverse magnetic field at the horizontal part of axial injection beam line of a cyclotron is about 10 Gauss. At the same time the C400 magnetic field is about 500 Gauss in magnitude at the places of the ion sources, vertical bending magnet and quadrupole lens location. Thereby the screening of these beam-line elements is needed. The 3D OPERA model of the cyclotron and channel elements is used for this purpose. |
||
FR5REP102 | Axial Injection Beam Line of C400 Superconducting Cyclotron for Carbon Therapy | 5020 |
|
||
C400 is compact superconducting isochronous cyclotron for carbon beam therapy designed by IBA, Louvain-La-Neuve (Belgium) in collaboration with JINR, Dubna (Russia). The cyclotron can accelerate all ions with charge to mass ratio 0.5. Protons are accelerated as single charge 2H+ molecules and extracted by stripping at 270 MeV. All other ions are extracted by an electrostatic deflector at 400 MeV/u. The final layout of the axial injection beam line of C400 cyclotron is given. Two ion sources for production of 12C6+ ions and Alphas beams are located at the horizontal part of the channel before both side of the combination vertical magnet. The third ion source for the production of 2H+ is placed in straight line on the vertical axis. The rotational symmetry of the beam is reestablished with the help of one quadrupole lens placed just after analyzing magnet. The beam focusing at the vertical part of the channel is provided by three solenoidal lenses instead of four quadrupoles used in the previous version of beam line. The results of simulation of ion beams transport in the axial injection channel are presented. |