Paper | Title | Page |
---|---|---|
TH2PBC01 | Plasma Wakefield Accelerators Using Multiple Electron Bunches | 3070 |
|
||
For 70 years particle acceleration schemes have been based on the same technology which places particles onto rf electric fields inside metallic cavities. However, since the accelerating gradients cannot be increased arbitrarily due to limiting effects such as wall breakdown, in order to reach higher energies today’s accelerators require km-long structures that have become very expensive to build, and therefore novel accelerating techniques are needed to push the energy frontier further. Plasmas do not suffer from those limitations since they are gases that are already broken down into electrons and ions. In addition, the collective behavior of the particles in plasmas allows for generated accelerating electric fields that are orders of magnitude larger than those available in conventional accelerators. As plasma acceleration technologies mature, one of the main future challenges is to monoenergetically accelerate a second trailing bunch by multiplying its energy in an efficient manner, so that it can potentially be used in a future particle collider. The work presented here analyzes the use of multiple electron bunches in order to enhance certain plasma acceleration schemes. |