A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jung, J.-Y.

Paper Title Page
TU5RFP042 Commissioning and User Operation of the ALS in Top-Off Mode 1183
 
  • C. Steier, B.J. Bailey, K.M. Baptiste, W. Barry, A. Biocca, W.E. Byrne, P.W. Casey, M.J. Chin, R.J. Donahue, R.M. Duarte, M.P. Fahmie, J. Gath, S.R. Jacobson, J. Julian, J.-Y. Jung, A.M. Kritscher, S. Kwiatkowski, S. Marks, J.P. McKean, R.S. Müller, H. Nishimura, J.W. ONeill, G.J. Portmann, S. Prestemon, D. Robin, S.L. Rossi, F. Sannibale, T. Scarvie, D. Schlueter, B. Shuman, A.Z. Smith-Baumann, G.D. Stover, CA. Timossi, W. Wan, T. Warwick, J.M. Weber, R.P. Wells, E.C. Williams
    LBNL, Berkeley, California
 
 

Funding: This work was supported by the Director, Office of Science, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.


The upgrade of the Advanced Light Source to enable top-off operation has been ongoing for the last four years. Activities over the last year have centered around radiation safety aspects, culminating in a systematic proof that top-off operation is equally safe as decaying beam operation, followed by commissioning and full user operations. Top-off operation at the ALS provides a very large increase in time-averaged brightness to ALS users (by about a factor of 10) as well as improvements in beam stability. The presentation will provide an overview of the radiation safety rationale, commissioning results, as well as experience in user operations.

 
TH3GAI04 Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments 3095
 
  • P.A. Seidl, A. Anders, F.M. Bieniosek, J.E. Coleman, J.-Y. Jung, M. Leitner, S.M. Lidia, B.G. Logan, P.N. Ni, D. Ogata, P.K. Roy, W.L. Waldron
    LBNL, Berkeley, California
  • J.J. Barnard, R.H. Cohen, D.P. Grote
    LLNL, Livermore, California
  • M. Dorf, E.P. Gilson
    PPPL, Princeton, New Jersey
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K+ ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ~100X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including:

  1. greater axial compression via a longer velocity ramp;
  2. beam steering dipoles to mitigate aberrations in the bunching module;
  3. time-dependent focusing elements to correct considerable chromatic aberrations; and
  4. plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >1013 cm-3.

 

slides icon

Slides