Paper | Title | Page |
---|---|---|
MO6RFP047 | High Frequency Bunch Train Generation from an RF Photoinjector at the AWA | 464 |
|
||
Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 with Argonne National Laboratory. An exploratory study for the generation of high frequency bunch trains is underway at the Argonne Wakefield Accelerator (AWA) facility. High frequency bunch trains have numerous applications ranging from advanced acceleration methods to THz radiation sources. Recent studies have shown that such trains can be generated when an intensity modulated laser pulse is incident on the photocathode in the gun. Using the recently developed technique of temporal pulse stacking with UV birefringent crystals* the modulation wavelength obtainable is primarily limited by the UV pulse length. For the AWA photoinjector laser system this limit is about 200 um (rms=670 fs); although using commercially available laser systems this can be as short as 10 um. We present measurements of the intensity modulated laser pulse created with an alpha-BBO crystal array, TStep simulations of the electron beam dynamics, and experimental plans to measure the bunch train using an L-band deflecting mode cavity. *J.G. Power et al., in Proc. 2008 Advanced Accelerator Concepts, Santa Cruz, Ca., AIP Press, editors C. Schroeder and K. Girardi |
||
TU6PFP046 | High-Flux Inverse Compton Scattering Systems for Medical, Industrial and Security Applications | 1387 |
|
||
Funding: This work is supported by the US Defense Threat Reduction Agency SBIR contract HDTRA1-08-P-0035. Conventional X-ray sources used for medical and industrial imaging suffer from low spectral brightness, a factor which severely limits the image quality that can be obtained. X-ray sources based on Inverse Compton Scattering (ICS) hold promise to greatly improve the brightness of X-ray sources. While ICS sources have previously been demonstrated, and have produced high-peak brightness X-rays, so far experiments have produced low average flux, which limits their use for certain important commercial applications (e.g. medical imaging). RadiaBeam Technologies is currently developing a high peak- and average-brightness ICS source, which implements a number of improvements to increase the interaction repetition rate, as well as the efficiency and stability of the ICS interaction itself. In this paper, we will describe these improvements, as well as plans for future experiments. |