A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jones, J.K.

Paper Title Page
WE5RFP047 A Recirculating Linac as a Candidate for the UK New Light Source Project 2376
 
  • P.H. Williams, D. Angal-Kalinin, J.K. Jones, B.D. Muratori, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Bartolini
    JAI, Oxford
  • I.P.S. Martin, J. Rowland
    Diamond, Oxfordshire
  • H.L. Owen
    UMAN, Manchester
  • P.H. Williams
    Cockcroft Institute, Warrington, Cheshire
 
 

A design for a free electron laser driver which utilises 1.3 GHz superconducting CW accelerating structures is studied. The machine will deliver longitudinally compressed electron bunches with repetition rates of 1 kHz with a possibility to increase up to 1 MHz. Tracking is performed from an NC RF photocathode gun, accelerating and compressing in three stages to obtain peak current greater than 1 kA at 2.2 GeV. This is achieved through injection at 200 MeV, then recirculating twice in a 1 GeV main linac. The optics design, optimisation procedures and start to end modelling of this system are presented.

 
WE6PFP024 ATF2 Ultra-Low IP Betas Proposal 2540
 
  • R. Tomás, H.-H. Braun, J.-P. Delahaye, A. Marin, D. Schulte, F. Zimmermann
    CERN, Geneva
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Bai, J. Gao, X.W. Zhu
    IHEP Beijing, Beijing
  • P. Bambade, M. Renier
    LAL, Orsay
  • Y. Honda, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Scarfe
    UMAN, Manchester
  • A. Seryi, G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The CLIC Final Focus System has considerably larger chromaticity than those of ILC and its scaled test machine ATF2. We propose to reduce the IP betas of ATF2 to reach a CLIC-like chromaticity. This would also allow to study the FFS tuning difficulty as function of the IP beam spot size. Both the ILC and CLIC projects will largely benefit from the ATF2 experience at these ultra-low IP betas.

 
WE6PFP071 ATF2 Spot Size Tuning Using the Rotation Matrix Method 2662
 
  • A. Scarfe, R. Appleby
    UMAN, Manchester
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The Accelerator Test Facility (ATF2) at KEK aims to experimentally verify the local chromaticity correction scheme to achieve a vertical beam size of 37nm. The facility is a scaled down version of the final focus design proposed for the future linear colliders. In order to achieve this goal, high precision tuning methods are being developed. One of the methods proposed for ATF2 is a novel method known as the ‘rotation matrix’ method. Details of the development and testing of this method, including orthogonality optimisation and simulation methods, are presented.

 
TU5RFP022 A Proposed New Light Source Facility for the UK 1141
 
  • R.P. Walker, R. Bartolini, C. Christou, J.H. Han, J. Kay, I.P.S. Martin, G. Rehm, J. Rowland
    Diamond, Oxfordshire
  • D. Angal-Kalinin, M.A. Bowler, J.A. Clarke, D.J. Dunning, B.D. Fell, A.R. Goulden, F. Jackson, S.P. Jamison, J.K. Jones, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, B.L. Militsyn, A.J. Moss, B.D. Muratori, S.M. Pattalwar, M.W. Poole, R.J. Smith, S.L. Smith, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, G.P. Diakun, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.L. Collier, C.A. Froud, G.J. Hirst, E. Springate
    STFC/RAL, Chilton, Didcot, Oxon
  • J.P. Marangos, J.W.G. Tisch
    Imperial College of Science and Technology, Department of Physics, London
  • B.W.J. McNeil
    USTRAT/SUPA, Glasgow
  • H.L. Owen
    UMAN, Manchester
 
 

The New Light Source (NLS) project was launched in April 2008 by the UK Science and Technology Facilities Council (STFC) to consider the scientific case and develop a conceptual design for a possible next generation light source based on a combination of advanced conventional laser and free-electron laser sources. Following a series of workshops and a period of scientific consultation, the science case was approved in October 2008 and the go-ahead given to continue the project to the design stage. In November the decision was taken that the facility will be based on cw superconducting technology in order to provide the best match to the scientific objectives. In this paper we present the source requirements, both for baseline operation and with possible upgrades, and the current status of the design of the accelerator driver and free-electron laser sources to meet those requirements.

 
TU5RFP083 Progress on the Commissioning of ALICE, the Energy Recovery Linac-Based Light Source at Daresbury Laboratory 1281
 
  • S.L. Smith, R. Bate, C.D. Beard, M.A. Bowler, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, M. Dufau, D.J. Dunning, B.D. Fell, P. Goudket, A.R. Goulden, S.A. Griffiths, J.D. Herbert, C. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, N. Marks, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, M.W. Poole, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, N. Thompson, B. Todd, T.M. Weston, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.R. Alexander, P. Atkinson, N. Bliss, I. Burrows, G. Cox, P.A.D. Dickenson, A. Gallagher, K.D. Gleave, J.P. Hindley, B.G. Martlew, I.D. Mullacrane, A. Oates, P.D. Quinn, D.G. Stokes, J. Strachan, P.J. Warburton, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire
  • W.R. Flavell, E.A. Seddon
    UMAN, Manchester
  • F.G. Gabriel
    FZD, Dresden
  • C. Gerth
    DESY, Hamburg
  • F.E. Hannon, C. Hernandez-Garcia, K. Jordan, G. Neil
    JLAB, Newport News, Virginia
  • K. Harada
    KEK, Ibaraki
  • P. Harrison, D.J. Holder, G.M. Holder, P. Weightman
    The University of Liverpool, Liverpool
  • S.F. Hill, G. Priebe, R.V. Rotheroe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • G.J. Hirst, P.G. Huggard
    STFC/RAL, Chilton, Didcot, Oxon
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
 

ALICE (Accelerators and Lasers in Combined Experiments) is a 35 MeV energy recovery linac based light source. ALICE is being developed as an experimental test-bed for a broad suite of science and technology activities that make use of electron acceleration and ultra-short pulse laser techniques. This paper reports the progress made in accelerator commissioning and includes the results of measurement made on the commissioning beam. The steps taken to prepare the beam for short pulse operation as a driver for a Compton Back Scattered source and in preparation for the commissioning of the free electron laser are reported.

 
FR5PFP021 Plans and Progress towards Tuning the ATF2 Final Focus System to Obtain a 35nm IP Waist 4353
 
  • G.R. White
    SLAC, Menlo Park, California
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • K. Kubo, S. Kuroda
    KEK, Ibaraki
  • Y. Renier
    LAL, Orsay
  • A. Scarfe
    UMAN, Manchester
  • R. Tomás
    CERN, Geneva
 
 

Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515


Using a new extraction line currently being commissioned, the ATF2 experiment plans to test a novel compact final focus optics design using a local chromaticity correction scheme, such as could be used in future linear colliders*. Using a 1.3 GeV beam of ~30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical IP waist of 35nm. We discuss our planned strategy, implementation details and early experimental results for tuning the ATF2 beam to meet the primary goal. These optics require uniquely tight tolerances on some magnet strengths and positions, we discuss efforts to re-match the optics to meet these requirements using high-precision measurements of key magnet elements. We simulated in detail the tuning procedure using several algorithms and different code implementations for comparison from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within 10% of the design optics value in at least 90% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks.


*"ATF2 Proposal", ATF2 Collaboration (Boris Ivanovich Grishanov et al.)., KEK-REPORT-2005-2, Aug 23, 2005.

 
FR5REP028 High-Level ALICE Software Development 4826
 
  • B.J.A. Shepherd, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The ALICE accelerator is a 35MeV energy recovery linac prototype at Daresbury in the U.K. Due to the highly experimental nature of the accelerator, there has been a strong influence of accelerator physicists in the high-level control software for the machine. Starting from the underlying EPICS-based control system, a suite of interactive commissioning software has been built using traditional software approaches, such as LabVIEW, as well as experimenting with interactive, rapid prototyping programming languages, such as Mathematica. Using the EPICS Channel Access protocols, the control system is flexible and extensible. A wide range of tools can be used to develop and debug high-level software, allowing machine physicists to use the most appropriate and familiar tools for software development.

 
FR5REP108 EMMA Diagnostic Line 5026
 
  • B.D. Muratori, J.K. Jones, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper will summarize the design of the extraction / diagnostic transfer line of the NS-FFAG. In order to operate EMMA, the energy recovery linac ALICE shall be used as injector and the energy will range from 10 to 20 MeV. Because this would be the first non-scaling FFAG, it is important that as many of the bunch properties are studied as feasible, both at injection and at extraction. To do this, a complete diagnostic line was designed consisting of a tomography module together with several other diagnostic devices including the possibility of using a transverse deflecting cavity. Details of the diagnostics are also presented.

 
FR5REP109 EMMA Commissioning 5029
 
  • B.D. Muratori, J.K. Jones, Y.M. Saveliev, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • C. Johnstone
    Fermilab, Batavia
  • S.R. Koscielniak
    TRIUMF, Vancouver
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper summarises the commissioning plans for this machine together with the major steps and experiments involved along the way. A description of how the 10 to 20 MeV beam is achieved within ALICE is also given, as well as extraction from the EMMA ring to the diagnostics line and then dump.

 
FR1RAI02 The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development 4200
 
  • M.A. Palmer, J.P. Alexander, M.G. Billing, J.R. Calvey, S.S. Chapman, G.W. Codner, C.J. Conolly, J.A. Crittenden, J. Dobbins, G. Dugan, E. Fontes, M.J. Forster, R.E. Gallagher, S.W. Gray, S. Greenwald, D.L. Hartill, W.H. Hopkins, J. Kandaswamy, D.L. Kreinick, Y. Li, X. Liu, J.A. Livezey, A. Lyndaker, V. Medjidzade, R.E. Meller, S.B. Peck, D.P. Peterson, M.C. Rendina, P. Revesz, D.H. Rice, N.T. Rider, D. L. Rubin, D. Sagan, J.J. Savino, R.D. Seeley, J.W. Sexton, J.P. Shanks, J.P. Sikora, K.W. Smolenski, C.R. Strohman, A.B. Temnykh, M. Tigner, S. Vishniakou, W.S. Whitney, T. Wilksen, H.A. Williams
    CLASSE, Ithaca, New York
  • J.M. Byrd, C.M. Celata, J.N. Corlett, S. De Santis, M.A. Furman, A. Jackson, R. Kraft, D.V. Munson, G. Penn, D.W. Plate, A.W. Rawlins, M. Venturini, M.S. Zisman
    LBNL, Berkeley, California
  • J.W. Flanagan, P. Jain, K. Kanazawa, K. Ohmi, H. Sakai, K. Shibata, Y. Suetsugu
    KEK, Ibaraki
  • K.C. Harkay
    ANL, Argonne
  • Y. He, M.C. Ross, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Kharakh, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • E.N. Smith
    Cornell University, Ithaca, New York
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program.


In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained.

 

slides icon

Slides

 
FR1RAI03 ATF2 Commissioning 4205
 
  • A. Seryi, J.W. Amann, P. Bellomo, B. Lam, D.J. McCormick, J. Nelson, J.M. Paterson, M.T.F. Pivi, T.O. Raubenheimer, C.M. Spencer, M.-H. Wang, G.R. White, W. Wittmer, M. Woodley, Y.T. Yan, F. Zhou
    SLAC, Menlo Park, California
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Apsimon, B. Constance, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • S. Araki, A.S. Aryshev, H. Hayano, Y. Honda, K. Kubo, T. Kume, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, J. Urakawa, K. Yokoya
    KEK, Ibaraki
  • S. Bai, J. Gao
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier, C. Rimbault
    LAL, Orsay
  • G.A. Blair, S.T. Boogert, V. Karataev, S. Molloy
    Royal Holloway, University of London, Surrey
  • B. Bolzon, N. Geffroy, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • G.B. Christian
    ATOMKI, Debrecen
  • J.-P. Delahaye, D. Schulte, R. Tomás, F. Zimmermann
    CERN, Geneva
  • E. Elsen
    DESY, Hamburg
  • E. Gianfelice-Wendt, M.C. Ross, M. Wendt
    Fermilab, Batavia
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • J.Y. Huang, W.H. Hwang, S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • Y. Iwashita, T. Sugimoto
    Kyoto ICR, Uji, Kyoto
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • A. Lyapin
    UCL, London
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, Graduate School of Science, Sendai
  • A. Scarfe
    UMAN, Manchester
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

 

slides icon

Slides