A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jones, F.W.

Paper Title Page
FR5PFP074 Self-Consistent Parallel Multi Bunch Beam-Beam Simulation Using a Grid-Multipole Method 4482
 
  • F.W. Jones
    TRIUMF, Vancouver
  • W. Herr, T. Pieloni
    CERN, Geneva
 
 

The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The parallel version of COMBI was first implemented using a soft-Gaussian collision model which entails minimal communication between worker processes. Recently we have extended the code to a fully self-consistent collision model using a Grid-Multipole method, which allows worker processes to exchange charge and field information in a compact form which minimizes communication overhead. In this paper we describe the Grid-Multipole technique used and its adaptation to the parallel environment through pre- and post-processing of charge and grid data. Performance measurements in multi-core and Myrinet-cluster environments will be given. We will also present our estimates of the potential for very large-scale simulations on massively-parallel hardware, in which the number of simulated bunches ultimately approaches the actual LHC bunch population.