A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Johnstone, C.

Paper Title Page
MO4PBC03 Developments for Cornell's X-Ray ERL 106
 
  • J.A. Crittenden, I.V. Bazarov, S.A. Belomestnykh, D.H. Bilderback, M.G. Billing, J.D. Brock, E.P. Chojnacki, B.M. Dunham, M. P. Ehrlichman, M.J. Forster, S.M. Gruner, G.H. Hoffstaetter, Y. Li, M. Liepe, C.E. Mayes, A.A. Mikhailichenko, H. Padamsee, S.B. Peck, D. Sagan, V.D. Shemelin, A.B. Temnykh, M. Tigner, V. Veshcherevich
    CLASSE, Ithaca, New York
  • C. Johnstone
    Fermilab, Batavia
 
 

Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring which is currently used for the Cornell High Energy Synchrotron Source (CHESS). Here we describe some of the recent developments for this ERL, including linear and nonlinear optics, tracking studies, vacuum system design, gas and intra beam scattering computations, and collimator and radiation shielding calculations based on this optics, undulator developments, optimization of X-ray beams by electron beam manipulation, technical design of ERL cavities and cryomodules, and preparation of the accelerator site.

 

slides icon

Slides

 
TU6PFP080 Nonscaling FFAG Variants for HEP and Medical Applications 1478
 
  • C. Johnstone
    Fermilab, Batavia
  • M. Berz, K. Makino
    MSU, East Lansing, Michigan
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • F.E. Mills
    PAC, Batavia, Illinois
  • P. Snopok
    UCR, Riverside, California
 
 

The quest for higher beam power and duty factor and precisely controlled beams at reasonable cost has generated world-wide interest in Fixed-field Alternating Gradient accelerators (FFAGs). A new concept in non-scaling FFAGs to stabilize the betatron tune is under development. The emphasis to date has been on electron and proton accelerators, yet many facilities utilize H- front ends. This concept naturally extends to H- FFAGs and under conditions of rapid acceleration, the FFAG functions essentially as a recirculating linac with a common-aperture arc. As such it may be suitable for replacement of aging H- linac sections. For a slow acceleration cycle, an H- FFAG machine can exploit H- techniques to control extraction and intensity, and represents an innovation in proton therapy accelerators. Prototype RF and magnet component design have been initiated. For ten-turn acceleration, the rf cavities in a 10-100 MeV FFAG cannot be re-phased on the revolution time scale, and local adjustment of the pathlength is the proposed approach. For slow acceleration, broad-band, low-frequency rf can be applied. The basic optics and components for such FFAGs are presented.

 
TU6PFP081 Commissioning of the Muon Test Area Beamline at Fermilab 1481
 
  • C. Johnstone, F.G. Garcia, M.A. Gerardi, W.S. Higgins, M.J. Kucera, M.R. Kufer, D.L. Newhart
    Fermilab, Batavia
 
 

A new experimental area, the Muon Test Area, has been constructed to develop, test, and verify muon ionization apparatus using the 400-MeV proton beam from the Fermilab Linac. Since muon-cooling apparatus is being developed for facilities that involve the capture, collection and cooling of ~1013 muons at a repetition rate of 15 Hz, conclusive tests require full Linac beam, or ~1013 protons/pulse at 15 Hz. A beamline has been designed which includes specialized insertions for linac beam diagnostics and beam measurements, greatly enhancing the functionality of the line in addition to providing beam for MTA experiments. Installation of the beamline is complete and first beam was achieved in November, 2008. The design, operational flexibility, and characteristics of the MTA beamline will be presented.

 
TU6RFP033 AC Dipole System for Inter-Bunch Beam Extinction in the Mu2e Beam Line 1611
 
  • E. Prebys, A.I. Drozhdin, C. Johnstone, N.V. Mokhov
    Fermilab, Batavia
  • C.M. Ankenbrandt
    Muons, Inc, Batavia
 
 

Funding: Supported under DOE contract DE-AC02-07CH11359.


The Mu2e experiment has been proposed at Fermilab to measure the rate for muons to convert to electrons in the field of an atomic nucleus with unprecedented precision. This experiment uses an 8 GeV primary proton beam consisting of short (~100 nsec) bunches, separated by 1.7 μs. It is vital that out-of-bunch beam be suppressed at the level of 10-9 or less. Part of the solution to this problem involves a pair of matched dipoles operating resonantly at half the bunch rate. There will be a collimation channel between them such that beam will only be transmitted when the fields are null. The magnets will be separated by 180 degrees of phase advance such that their effects cancel for all transmitted beam. Magnet optimization considerations will be discussed, as will optical design of the beam line. Simulations of the cleaning efficiency will also be presented.

 
WE3PBC05 Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-Scaling FFAGs and Related Accelerators Including Modern User Interfaces 1907
 
  • C. Johnstone, V. Kashikhin
    Fermilab, Batavia
  • M. Berz, K. Makino
    MSU, East Lansing, Michigan
  • P. Snopok
    St. Petersburg State University, St. Petersburg
 
 

Innovations in computer techniques in combination with increased sophistication in modeling are required to accurately understand, design and predict high-energy, and, in particular, the new generation of frontier accelerators for HEP and other applications. A recently identified problem lies in the simulation and optimization of FFAGs and related devices, for which currently available tools provide only approximate and inefficient simulation. For this purpose new tools are being developed within the advanced accelerator code COSY INFINITY to address complex, specific electromagnetic fields, including high-order fringe fields, out of plane fields, edge effects, and general field profiles; tools linked to modern global optimization techniques that can further accommodate the ultra-large emittances of proposed beams to allow efficient probing of very high dimensional parameter space. This new set of tools based on modern techniques and simulation approaches will be furnished with modern GUI-based user interfaces.

 

slides icon

Slides

 
FR5REP109 EMMA Commissioning 5029
 
  • B.D. Muratori, J.K. Jones, Y.M. Saveliev, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • C. Johnstone
    Fermilab, Batavia
  • S.R. Koscielniak
    TRIUMF, Vancouver
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper summarises the commissioning plans for this machine together with the major steps and experiments involved along the way. A description of how the 10 to 20 MeV beam is achieved within ALICE is also given, as well as extraction from the EMMA ring to the diagnostics line and then dump.

 
TH4GAC03 PAMELA Overview: Design Goals and Principles 3142
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

Funding: EPSRC EP/E032869/1


The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator.

 

slides icon

Slides