Paper | Title | Page |
---|---|---|
TU5PFP028 | High-Gradient RF Breakdown Studies with Narrow Waveguide | 879 |
|
||
High-gradient RF breakdown studies have been in progress at Nextef (New X-band Test Facility at KEK) since 2006. To study the characteristics of different materials on high-field RF breakdown, we have performed high-gradient experiments by using narrow waveguides that has a field of around 140 MV/m at 50 MW power. Breakdown rates of stainless-steel and copper cases were measured and the results are described in this paper. |
||
WE3GRC04 | 3-Dimensional Beam Profile Monitor Based on a Pulse Storage in an Optical Cavity for Multi-Bunch Electron Beam | 1925 |
|
||
Funding: Work supported by a Grant-In-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210) and a Grant-In-Aid for JSPS Fellows (19-5789) We have been developing a pulsed-laser storage technique in a super-cavity for compact X-ray sources. The pulsed-laser super-cavity enables to make high peak power and small waist laser at the collision point with the electron beam. Recently, using 357 MHz mode-locked Nd:VAN laser pulses which stacked in a super-cavity scattered off a multi-bunch electron beam, we obtained multi-pulse X-rays through laser-Compton scattering. Detecting an X-ray pulse-by-pulse using a high-speed detector makes it possible to measure the 3-dimensional beam size with bunch-by-bunch scanning the laserwire target position and pulse timing. This technique provides not only the non-destructive beam profile monitoring but also the measuring of bunch length and/or bunch spacing shifting. In our multi-bunch electron linac, the bunch spacing narrowing due to the electron velocity difference in the train at the output of rf-gun cavity was observed. The principle of the 3-dimensional laserwire monitor and the experimental results of multi-bunch electron beam measurements will be presented at the conference. |
||
|
||
WE5PFP018 | Results from the CLIC X-Band Structure Test Program at NLCTA | 2027 |
|
||
Funding: Work supported by the DOE under contract DE-AC02-76SF00515 As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their manufacturing (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives which could bring even higher efficiency. This paper summarizes the high gradient test results from the NLCTA in support of this effort. |