Paper | Title | Page |
---|---|---|
TU5RFP038 | Performance Requirements and Metrics for Future X-Ray Sources | 1177 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 (LBNL) and DE-AC02-76SF00515 (SLAC). The future directions of x-ray science and the photon beam properties required to pursue them were recently evaluated by a joint LBNL–SLAC study group*. As identified by this group, essential x-ray capabilities for light sources in the future (but not necessarily from any single source) include: 1) x-ray pulses with Fourier-transform-limit time structure from the picosecond to attosecond regime, synchronized with conventional lasers, and with control of longitudinal pulse shape, amplitude and phase; 2) full transverse coherence; 3) high average flux and brightness; 4) energy tunability in soft and hard x-ray regimes, and polarization control. Metrics characterizing source properties include not only average and peak spectral brightness but also the photons per pulse and repetition rate as a function of pulse length, and the proximity to transform-limited dimensions in six dimensional phase space. We compare the projected performance of various advanced x-ray source types, with respect to these metrics and discuss their advantages and disadvantages. We briefly discuss the technology challenges for future sources and the areas of R&D required to address them. *R. Falcone, J. Stohr et al., “Scientific Needs for Future X-Ray Sources in the U.S. - A White Paper”, SLAC-R-910, LBNL-1090E, October 2008. |
||
WE5RFP015 | Concepts for the PEP-X Light Source | 2297 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has DBA or QBA cells in two of the six arcs that provide a total ~30 straight sections for ID beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using ~100 m of damping wigglers the horizontal emittance at 4.5 GeV would be ~0.1 nm-rad with >1 A stored beam. PEP-X will produce photon beams having brightnesses near 1022 at 10 keV. Studies indicate that a ~100-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the PEP-X lattice and beam line designs are presented and other implementation options are discussed. |
||
WE5RFP018 | Reduction of Beam Emittance of PEP-X Using Quadruple Bend Achromat Cell | 2306 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515 SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel*,**. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design. *R. Hettel et al., “Ideas for a Future PEP-X Light Source”, EPAC08, p.2031(2008). |