A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

He, X.D.

Paper Title Page
WE6RFP102 Progress towards a 9.37GHz Hybrid Dielectric-Iris-Loaded Structure Filled with Low Loss Dielectric 3038
 
  • X.D. He, S. Dong, Y.J. Pei, C.-F. Wu
    USTC/NSRL, Hefei, Anhui
 
 

Funding: the National Nature Science Foundation of China, Grant No. 10375060, 10375061 and 10675116


One of the major concerns in the development of hybrid dielectric-iris-loaded structure is the performance of the used dielectric. The previous dielectric is machinable but the loss tangent is slightly high. So we adopt the new dielectric (Mg-Ca-Ti-O) with loss tangent of about 2·10-4. Because of its high hardness and brittleness, the machining technology and methods are attempted. In this paper, we present a new design of the structure. The model cavities and the coupler for this structure with the new dielectric are investigated experimentally. The experiment results are accorded with the simulated results. In the end, the amplitude and phase shift of the electric field and R/Q of this structure at the operation frequency are even got by a bead-pull experiment.

 
WE6RFP103 Development of X-band Photonic Band Gap Accelerating Structure 3041
 
  • Z.P. Li
    USTC, Hefei, Anhui
  • S. Dong, X.D. He, C.-F. Wu
    USTC/NSRL, Hefei, Anhui
 
 

Funding: National Nature Science Foundation of China, Grant No. 10675116 and 10375060


We present the new experimental results for an X-band (11.42GHz) metallic PBG accelerating cavity. A coupler of a single cavity was fabricated and cold tested. An X-band traveling-wave PBG accelerator was designed based on CST MWS transient analysis. The X-band PBG accelerator is now under construction, future work will focus on the structure to be cold tested and tuned.