Paper | Title | Page |
---|---|---|
MO6RFP045 | Photocathode Studies for Ultra-Low Emittance Electron Sources | 458 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Future x-ray light sources such as FELs and ERLs impose requirements on emittance and bunch repetition rate that are very demanding on the electron source. Even if perfect compensation of space-charge effects could be attained, the fundamental cathode emission properties determine a lower bound on achievable source emittance. Development of ultra-low-emittance sources is a rapidly evolving area of R&D with exciting new results measured for low bunch charge, but it is very difficult to compare different results and quantify what works. The study of photocathodes, with the goal of optimizing for low emittance, is limited in scope. In this paper, we describe an R&D effort to systematically measure and design the fundamental properties of photocathodes suitable for an FEL or ERL. We plan to apply surface analysis lab techniques to characterize photoemission, and then correlate material properties with emittance. On the theory side, we plan to calculate electron band structure for crystal surfaces, correlate with lattice parameters and work function, and then estimate the transverse momentum using the three-step model. The status and results to date of this effort will be reported. |
||
TU5RFP002 | Alternate Hybrid Mode Bunch Patterns for the Advanced Photon Source | 1084 |
|
||
Funding: This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source is filled for five weeks per year in a special bunch (hybrid) pattern of one large 16-mA (74-nC) bunch in a gap of 3 microseconds, and the remaining 86 mA in 8 trains of 7 consecutive bunches, forming a 500-microsecond-long bunch train. We are developing variations of this bunch pattern, which might have 3 large bunches equally spaced in the 3-microsecond gap in a 4-mA, 16-mA, and 8-mA distribution. The 500-microsecond-long bunch train could be changed to 2 or 3 bunch trains of 7 bunches. We report on the difficulties in bringing these into future operations: impedance-driven injection losses, sextupoles in injection section, lifetime and topup injection limit, and beam diagnostics responses to the patterns. |
||
TU5RFP079 | ERL Staging | 1272 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. ERL staging is a novel concept that provides a practical path to upgrading an existing synchrotron light source while minimizing disruption to the users and managing the technical risk. In the very first stage, the accelerator operating parameters are comparable to CEBAF without recirculation. Therefore, initially, energy recovery is not required and the injector is more modest. Consequently, the technical risk is significantly reduced relative to the full ERL. Using the APS as an example, the first stage is based on a full-energy, 7-GeV superconducting radiofrequency (srf) linac and an electron source that is almost off-the-shelf. The linac would initially deliver a low average current beam (<200 uA), but with a geometric emittance that is much smaller than the storage ring, the x-ray brightness can exceed the APS. Furthermore, the spatial coherence fraction would be about 100 times higher and the pulse length up to 100 times smaller than the APS. Valuable srf operating experience is attained at an early stage while allowing critical energy recovery issues to be studied. Energy recovery is commissioned in stage 2. The optics design and performance at each stage will be presented. |
||
FR5RFP043 | Simulations of Electron-Cloud Current Density Measurements in Dipoles, Drifts and Wigglers at CesrTA | 4628 |
|
||
Funding: Supported by the US National Science Foundation, the US Department of Energy under Contracts No. DE-AC02-06CH11357, DE-AC02-05CH11231, and DE-AC02-76SF00515, and by the Japan/US Cooperation Program. CESR at Cornell has been operating as a damping ring test accelerator (CesrTA) with beam parameters approaching those anticipated for the ILC damping rings. A core component of the research program is to fully understand electron cloud effects in CesrTA. As a local probe of the electron cloud, several segmented retarding field analyzers (RFAs) have been installed in CesrTA in dipole, drift and wiggler regions. Using these RFAs, the energy spectrum of the time-average electron cloud current density striking the walls has been measured for a variety of bunch train patterns; with bunch populations up to 2x1010 per bunch, beam energies from 2 to 5 GeV, horizontal geometric emittances from roughly 10 to 133 nm, and bunch lengths of about 1 cm; and for both positron and electron beams. The effect of mitigation measures, such as coatings, has also been studied. This paper will compare these measurements with the predictions of simulation programs, and discuss the implications of these comparisons for our understanding of the physics of electron cloud generation and mitigation in ILC-like damping rings. |
||
FR5RFP044 | Studies of the Effects of Electron Cloud Formation on Beam Dynamics at CesrTA | 4631 |
|
||
Funding: National Science Foundation award 0734867 Office of Science, U.S. Department of Energy contracts DE-AC02-05CH11231 and DE-AC02-06CH11357 The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e+e- collider in 2008. A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud in a number of experiments, including measurements of coherent tune shifts and emittance growth in various bunch train configurations, with different bunch currents, beam energies, beam emittance, and bunch lengths, for both positron and electron beams. This paper compares these measurements to modeling results from several advanced cloud simulation algorithms and discusses the implications of these comparisons for our understanding of the physics of electron cloud formation and decay in damping rings of the type proposed for future high-energy linear colliders. |
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|