Paper | Title | Page |
---|---|---|
TU5RFP031 | Recent Progress of the Operation at PF-Ring and PF-AR | 1165 |
|
||
Two synchrotron light sources of the Photon Factory storage ring (PF-ring) and the Photon Factory advanced ring (PF-AR) have been stably operated at KEK. PF-ring covers the photon-energy range from VUV to hard X-ray using a 2.5 GeV (sometimes 3.0 GeV) electron beam. PF-AR is mostly operated in a single-bunch mode of 6.5GeV to provide pulsed hard X-rays. Recently, the operation has progressed to realize a so-called top-up injection at PF-ring. In a single-bunch mode, the continuous injection to preserve a constant beam current of 51 mA has been carried out since February 2007. In addition, the injection with continuing the experiments has been successfully operated in a multi-bunch mode since October 2008. At PF-AR, sputter ion pumps have been extensively reinforced to prolong the beam lifetime and to reduce the frequency of sudden lifetime drops by substituting for distributed ion pumps, which are considered as one of the dust sources. In this conference, we present the recent progress of the operation at PF-ring and PF-AR including machine developments. |
||
TU5RFP084 | Beam Optics Study for the Compact ERL in Japan | 1284 |
|
||
A compact ERL (energy recovery linac) is planned in Japan in order to demonstrate excellent ERL performances and to test key components such as low-emittance photocathode gun and superconducting RF cavity. We studied and optimized the compact ERL optics (except the injector part) to generate a subpico-second bunch in bunch compression mode and to preserve the beam emittance in normal and low-emittance mode. As a result, we could obtain a very short bunch of about 50 fs with a charge of 77 pC in bunch compression mode and almost keep the normalized emittance of 0.1 mm mrad with a charge of 7.7 pC in low-emittance mode. We also designed it to achieve efficient energy recovery at the superconducting RF cavities and to transport the beam to the dump section without serious loss. The design study of the compact ERL optics was carried out with the simulation code Elegant, including CSR(coherent synchrotron radiation) effects. In this paper, we will present the results of the beam optics study for the compact ERL. |
||
TU6RFP045 | Stored Beam Stability during Pulsed Sextupole Injection at the Photon Factory Storage Ring | 1647 |
|
||
We successfully demonstrated a new beam injection method using a single pulsed sextupole magnet (PSM). The PSM has a parabolic-shaped magnetic field, which is expected to provide an effective kick to the injected beam without little effects on the stored beam. We installed the PSM injection system at the Photon Factory storage ring (PF-ring) and succeeded in injecting the beam into PF-ring and storing the current up to 450 mA. This is the first demonstration of the PSM beam injection in electron storage rings. We also tested top-up injection and confirmed that dipole oscillation of the stored beam was sufficiently reduced compared with that generated by the conventional injection system. In this conference, we will present the experimental results and the advantages of the PSM beam injection. |
||
WE5RFP072 | Fast Local Bump System for the Helicity Switching at the Photon Factory | 2429 |
|
||
A fast local bump system for the helicity switching of a circular/linear polarized undulator (CPU) has been developed at the Photon Factory storage ring (PF-ring). The system consists of five identical bump magnets and tandem APPLE-2 type CPUs. In addition, fast correction magnets for a leakage of the bump were prepared. We designed the bump magnets with a core length of 0.15 m, a pole gap of 21 mm and the coils of 32 turns, which were excited by bipolar power supplies with a capacity of ±100 A and ±50 V since a switching frequency of more than 10 Hz and a bump angle of 0.3 mrad were required for user experiments. The bump magnets and one of CPUs were installed at PF-ring in March 2008, and the experiments for the machine development using a stored beam have been progressed. In this conference, we present the first experimental results with the bump system. |
||
TU5RFP081 | Status of the Energy Recovery Linac Project in Japan | 1278 |
|
||
Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL. |
||
TU5RFP083 | Progress on the Commissioning of ALICE, the Energy Recovery Linac-Based Light Source at Daresbury Laboratory | 1281 |
|
||
ALICE (Accelerators and Lasers in Combined Experiments) is a 35 MeV energy recovery linac based light source. ALICE is being developed as an experimental test-bed for a broad suite of science and technology activities that make use of electron acceleration and ultra-short pulse laser techniques. This paper reports the progress made in accelerator commissioning and includes the results of measurement made on the commissioning beam. The steps taken to prepare the beam for short pulse operation as a driver for a Compton Back Scattered source and in preparation for the commissioning of the free electron laser are reported. |