A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hanke, K.

Paper Title Page
TU6PFP086 LHC Beams from the CERN PS Booster 1494
 
  • B. Mikulec, A. Blas, C. Carli, A. Findlay, K. Hanke, G. Rumolo, J. Tan
    CERN, Geneva
 
 

The CERN PS Booster (PSB) produces a variety of beam flavours for the LHC. While the nominal LHC physics beams require 6 Booster bunches with intensities up to 1.6·1012 protons per bunch, during the LHC commissioning single bunch beams with variable intensities as low as 5·109 protons have to be provided reproducibly. The final transverse and in many cases also the final longitudinal beam characteristics have to be achieved already in the PSB and can be very demanding in terms of beam brightness and stability. The optimized production schemes for the different LHC beam flavours in the PSB and the achieved machine performance are presented. Experience with the first beams sent to the LHC in September 2008 is discussed. An overview of the first measured results with a new production scheme of the nominal LHC beam using single instead of double-batch beam transfer from the PSB to the PS is also given.

 
TU6PFP087 High Intensity Beams from the CERN PS Booster 1497
 
  • B. Mikulec, M. Chanel, A. Findlay, K. Hanke, D. Quatraro, G. Rumolo, J. Tan, R. Tomás
    CERN, Geneva
 
 

The CERN Proton Synchrotron Booster (PSB) has been running for more than 30 years. Originally designed to accelerate particles from 50 to 800 MeV, later upgraded to an energy of 1 GeV and finally 1.4 GeV, it is steadily being pushed to its operational limits. One challenge is the permanent demand for intensity increase, in particular for CNGS and ISOLDE, but also in view of LINAC4. As it is an accelerator working with very high space charge during the low energy part of its cycle, its operational conditions have to be precisely tuned. Amongst other things resonances must be avoided, stop band crossings optimized and the machine impedance minimized. Recently, an operational intensity record was achieved with >4.25·1013 protons accelerated. An orbit correction campaign performed during the 2007/2008 shutdown was a major contributing factor to achieving this intensity. As the PSB presently has very few orbit correctors available, the orbit correction has to be achieved by displacing and/or tilting some of the defocusing quadrupoles common to all 4 PSB rings. The contributing factors used to optimize performance will be reviewed.

 
TH6PFP035 Studies on Single Batch Transfer of LHC Type Beams between the CERN PS Booster and the PS 3778
 
  • C. Carli, A. Blas, A. Findlay, R. Garoby, S. Hancock, K. Hanke, B. Mikulec, M. Schokker
    CERN, Geneva
 
 

At present, for most LHC type physics beams, six buckets of the PS operated with harmonic number h=7 are filled in two transfers, and each of the PS Booster rings provides only one bunch. The scheme presented aims at replacing the double batch transfer by a single batch transfer and is of interest (i) for the nominal 25 ns LHC beams once the Booster injection energy has been increased after completion of Linac4 and (ii) already now for 50 ns and 75 ns LHC beams less demanding for the Booster in terms of beam brightness. Two bunches with the correct spacing must be generated in the Booster rings by superposition of an h=2 RF system and a smaller h=1 component. Theoretical considerations and first experimental results will be presented.

 
FR5RFP056 Reference Measurements of the Longitudinal Impedance in the CERN SPS 4667
 
  • E.N. Shaposhnikova, T. Bohl, H. Damerau, K. Hanke, T.P.R. Linnecar, B. Mikulec, J. Tan, J. Tuckmantel
    CERN, Geneva
 
 

First reference measurements of the longitudinal impedance were made with beam in the SPS machine in 1999 to quantify the results of the impedance reduction programme, completed in 2001. The 2001 data showed that the low-frequency inductive impedance had been reduced by a factor 2.5 and that bunch lengthening due to the microwave instability was absent up to the ultimate LHC bunch intensity. Measurements of the quadrupole frequency shift with intensity in the following years suggest a significant increase in impedance (which nevertheless remains below the 1999 level) due to the installation of eight extraction kickers for beam transfer to the LHC. Microwave instability is still not observed up to the maximum bunch intensities available from injector. The experimental results are compared with expectations based on the known longitudinal impedance of the different machine elements in the SPS.

 
FR5REP052 Construction Status of Linac4 4884
 
  • F. Gerigk, C. Carli, R. Garoby, K. Hanke, A.M. Lombardi, R. Maccaferri, S. Maury, S. Ramberger, C. Rossi, M. Vretenar
    CERN, Geneva
 
 

The civil engineering works of the Linac4 linear accelerator at CERN started in October 2008 and regular machine operation is foreseen for 2013. Linac4 will accelerate H- ions to an energy of 160 MeV for injection into the PS Booster (PSB). It will thus replace the ageing Linac2, which presently injects at 50 MeV into the PSB, and it will also represents the first step in the injector upgrade for the LHC aiming at increasing its luminosity. This paper reports on the status of the design and construction of the main machine elements, which will be installed in the linac tunnel from the beginning of 2012 onwards, on the progress of the civil engineering and on the ongoing activities at the Linac4 test stand.

 
FR5REP055 Linac4 Beam Characterisation before Injection into the CERN PS Booster 4893
 
  • B. Mikulec, G. Bellodi, M. Eshraqi, K. Hanke, T. Hermanns, S. Lanzone, A.M. Lombardi, U. Raich
    CERN, Geneva
 
 

Construction work for the new CERN linear accelerator, Linac4, started in October 2008. Linac4 will replace the existing Linac2 and provide an H- beam at 160 MeV (as opposed to the present 50 MeV proton beam) for injection into the CERN PS Booster (PSB). The charge-exchange H- injection combined with the higher beam energy will allow for an increase in beam brightness required for reaching the ultimate LHC luminosity. Commissioning of Linac4 and of the transfer line to the PSB is planned for the last quarter of 2012. Appropriate beam instrumentation is foreseen to provide transverse and longitudinal beam characterization at the exit of Linac4 and in two dedicated measurement lines located before injection into the PSB. A detailed description of the diagnostics set, especially of spectrometer and emittance meter, and the upgrade of the measurement lines for Linac4 commissioning and operation is presented.