A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hajdu, J.

Paper Title Page
FR3RBI01 Single Particle Diffraction at FLASH 4286
 
  • M.J. Bogan, S. Boutet, P. DeCorwin-Martin, D.G. Starodub
    SLAC, Menlo Park, California
  • S. Bajt, H. Chapman, J. Schulz
    DESY, Hamburg
  • A. Barty, W.H. Benner, M. Frank, S.P. Hau-Riege, B. Woods
    LLNL, Livermore, California
  • J. Hajdu, B. Iwan, M.M. Seibert, N. Timneanu
    Uppsala University, Biomedical Centre, Uppsala
  • S. Marchesini
    LBNL, Berkeley, California
  • U. Rohner
    Tofwerk, Thun
 
 

Radiation damage limits the resolution of structural information obtained by X-ray diffraction. We are developing coherent diffractive imaging of biological specimens beyond conventional radiation damage resolution limits. The soft X-ray free-electron-laser (FEL) in Hamburg, FLASH*, was used to generate high-resolution low-noise coherent diffraction patterns from nanostructured nonperiodic objects before they turned into a plasma and exploded during single {10}-30 fs long X-ray pulses**,***. Iterative phase retrieval algorithms were used to reconstruct images of the objects****. Recent single particle diffraction experiments at FLASH, achieved in part due to the bunch train time pattern available from this superconducting linear accelerator, will be described. Data from single nanoparticles, their clusters and single cells will be discussed. Extending this approach to hard X-ray FELs, such as the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, is anticipated to facilitate near atomic resolution imaging of nm-to-um-sized objects without the need for crystallization*****.


* Ayvazyan et al Eur Phys J D 2006 37 297
** Chapman et al Nat Phys 2006 2 839
*** Bogan et al Nano Lett 2008 8 310
**** Marchesini Rev Sci Instr 2007 78 011301
***** Neutze et al Nature 2000 406 752