Paper | Title | Page |
---|---|---|
TU5PFP033 | BNL 703 MHz SRF Cryomodule Demonstration | 891 |
|
||
This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary VTA cavity testing, carried out at Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1x1010, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines. |
||
TU5PFP035 | Proof-of-Principle Experiment of a Ferroelectric Tuner for a 1.3 GHz Cavity | 897 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz RF cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner. The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when the voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis will be discussed in the paper. |
||
TU5PFP036 | Design of the Fundamental Mode Damper and the HOM Dampers for the 56 MHz SRF Cavity | 900 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A 56 MHz Superconducting RF cavity is developed for the luminosity enhancement of the Relativistic Heavy Ion Collider (RHIC). The 56 MHz SRF cavity enables to adiabatically rebucket the beam from the 28 MHz accelerating cavities, which with shorter bunch lengths will enhance the luminosity significantly. The 56 MHz SRF cavity fundamental mode must be damped during injection and acceleration by a fundamental mode damper (FD), which is physically withdrawn at store for operation. The cavity frequency changes from the withdrawing motion but is kept below the beam frequency at store by a judicious axial placement of the FD. Physics studies by numerical simulations, tests of the FD in the prototype cavity, and the challenging engineering issues are here addressed. In addition, higher-order mode (HOM) dampers are necessary for the stable operation of the 56 MHz SRF cavity. The HOM’s are identified and the external Q factors are obtained from tests of the prototype cavity and are compared to simulations with the CST MWS program. The HOM damper blocks the fundamental mode by a 5 element high pass filter. The HOM stability criteria of the cavity are satisfied with four HOM dampers. |
||
WE6PFP062 | MeRHIC – Staging Approach to eRHIC | 2643 |
|
||
Funding: Work performed under US DOE contract DE-AC02-98CH1-886 Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC. |
||
TH5PFP082 | Matrix Solution of Coupling Impedance in Multi-Layer Circular Cylindrical Structures | 3395 |
|
||
Funding: This work was supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Continuing interest in computing the coupling impedance of cylindrical multi-layer beam tubes led to several recent publications. A novel matrix method is here presented in which radial wave propagation is treated in analogy to longitudinal transmission lines. Starting from the Maxwell equations the solutions for monopole and dipole electromagnetic fields are in each layer described respectively by a 2×2 and 4×4 matrix. Assuming isotropic material properties within one layer, the radially transverse field components at the inner boundary of a layer are uniquely determined by matrix transfer of the field components at its outer boundary. By imposing power flow constraints on the matrix, field matching between layers is enforced and replaced by matrix multiplication. The wall impedance is found as eigen solution to the scalar Helmholtz equation with the additional boundary condition that the longitudinal magnetic field vanishes at the inner beam tube wall. The matrix method is demonstrated via the example of the longitudinal impedance of a multi-layer HOM absorber, involving a ceramic tube with metal coating and an external ferrite layer. |