A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Green, M.A.

Paper Title Page
MO6PFP069 Progress on the MuCOOL and MICE Coupling Coils 289
 
  • M.A. Green, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • A.B. Chen, X.L. Guo, X.K. Liu, H. Pan, L. Wang, H. Wu, F.Y. Xu, S.X. Zheng
    ICST, Harbin
  • D.J. Summers
    UMiss, University, Mississippi
 
 

Funding: This work is supported by funds under the “985-2” plan of HIT. This work is also supported by the Office of Science, US-DOE under DOE contract DE-AC02-05CH11231 and by NSF through NSF-MRI-0722656.


The superconducting coupling solenoid for MuCOOL and MICE will have an inside radius of 750 mm, and a coil length of 285 mm. The MuCOOL coupling coil is identical to the MICE coupling coils. The MICE coupling magnet will have a self inductance of 592 H. When operated at it maximum design current of 210 A (the highest momentum operation of MICE), the magnet stored energy will be about 13 MJ. These magnets will be kept cold using a pair of pulse tube cryocoolers that deliver 1.5 W at 4.2 K and 55 W at 60 K. This report describes the progress on the MuCOOL and MICE coupling magnet design and engineering. The progress on the construction of the first coupling coil will also be presented.

 
MO6PFP070 Progress on the Fabrication and Testing of the MICE Spectrometer Solenoids 292
 
  • S.P. Virostek, M.A. Green, D. Li, M.S. Zisman
    LBNL, Berkeley, California
 
 

Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231.


The Muon Ionization Cooling Experiment (MICE) is an international collaboration that will demonstrate ionization cooling in a section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. At each end of the cooling channel a spectrometer solenoid magnet consisting of five superconducting coils will provide a 4 tesla uniform field region. The scintillating fiber tracker within the magnet bore tubes will measure the emittance of the muon beam as it enters and exits the cooling channel. The 400 mm diameter warm bore, 3 meter long magnets incorporate a cold mass consisting of two coil sections wound on a single aluminum mandrel: a three-coil spectrometer magnet and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The fabrication of the spectrometer solenoids has been completed, and preliminary testing and field mapping of the magnets is nearly complete. The key design features of the spectrometer solenoid magnets are presented along with a summary of the progress on the testing and magnetic measurements.

 
MO4PBC04 The Wisconsin Free Electron Laser Initiative 109
 
  • K. Jacobs, J. Bisognano, M. Bissen, R.A. Bosch, M.A. Green, H. Höchst, K.J. Kleman, R.A. Legg, R. Reininger, R. Wehlitz
    UW-Madison/SRC, Madison, Wisconsin
  • W. Graves, F.X. Kärtner, D.E. Moncton
    MIT, Cambridge, Massachusetts
 
 

Funding: Work supported by the University of Wisconsin - Madison. SRC is supported by the U.S. National Science Foundation under Award No. DMR-0537588.


The University of Wisconsin-Madison/Synchrotron Radiation Center and MIT are developing a design for a seeded VUV/soft X-ray Free Electron Laser serving multiple simultaneous users. The present design uses an L-band CW superconducting 2.2 GeV electron linac to deliver 200 pC bunches to multiple FELs operating at repetition rates from kHz to MHz. The FEL output will be fully coherent both longitudinally and transversely, with tunable pulse energy, cover the 5-900 eV photon range, and have variable polarization. We have proposed a program of R&D to address the most critical aspects of the project. The five components of the R&D program are:

  1. Prototyping of a CW superconducting RF photoinjector operating in the self-inflating bunch mode.
  2. Development of conventional laser systems for MHz seeding of the FEL, and femtosecond timing and synchronization.
  3. Address thermal distortion and surface contamination issues on the photon optics.
  4. Investigate advanced undulator concepts to help reduce facility cost and/or extend performance.
  5. Perform detailed modeling of all aspects of the FEL, as part of production of a Conceptual Design Report for the FEL facility.

 

slides icon

Slides

 
WE5RFP032 Design of the Wisconsin FEL Seeded Soft X-Ray FEL Undulator Lines 2336
 
  • W. Graves, F.X. Kärtner, D.E. Moncton
    MIT, Cambridge, Massachusetts
  • J. Bisognano, M. Bissen, R.A. Bosch, M.A. Green, K. Jacobs, K.J. Kleman, R.A. Legg, R. Reininger
    UW-Madison/SRC, Madison, Wisconsin
 
 

The seeded FEL performance of a number of Wisconsin FEL (WiFEL) undulator lines is described. The experimental design requirements include coverage of a broad wavelength range, rapid wavelength tuning, variable polarization, and variable pulse energy. The beam parameters allow experiments ranging from those requiring low peak power with high average spectral flux to those that need high peak power and short pulse lengths in the femtosecond range. The FELs must also be stable in timing, power, and energy while satisfying constraints on electron beam quality and fluctuations, undulator technologies, and seed laser capabilities. Modeling results are presented that illustrate the design performance over the full wavelength range of the facility.