A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gladkikh, P.

Paper Title Page
TU6PFP040 A Compact Ring for Thom X-Ray Source 1372
 
  • C. Bruni, Y. Fedala, J. Haissinski, M. Lacroix, B. Mouton, R. Roux, A. Variola, Z.F. Zomer
    LAL, Orsay
  • E. Bressi
    CNAO Foundation, Milan
  • P. Brunelle, M.-E. Couprie, J.-C. Denard, N. Guillotin, P. Lebasque, A. Loulergue, P. Marchand, F. Marteau, R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  • P. Gladkikh
    NSC/KIPT, Kharkov
 
 

The goal of X-ray sources based on Compton back scattering processes is to develop a compact device, which could produce an intense flux of monochromatic X-rays. Compton back-scattering resuls from collisions between laser pulses and relativistic electron bunches. Due to the relative low value of the Compton cross section, a high charge electron beam, a low emittance and a high focusing at the interaction point are required for the electron beam. In addition, the X-ray flux is related to the characteristics of the electron beam, which are themselves dynamically affected by the Compton interaction. One possible configuration is to inject frequently into a storage ring with a low emittance linear accelerator without waiting for the synchrotron equilibrium. As a consequence, the optics should be designed taking into account the characteristics of the electron beam from the linear accelerator. The accelerator ring design for a 50 MeV electron beam, aiming at producing a flux higher than 1013 ph/s, will be presented.

 
WE6RFP065 The CLIC Positron Source Based on Compton Schemes 2945
 
  • L. Rinolfi, F. Antoniou, H.-H. Braun, Y. Papaphilippou, D. Schulte, A. Vivoli, F. Zimmermann
    CERN, Geneva
  • E.V. Bulyak, P. Gladkikh
    NSC/KIPT, Kharkov
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • O. Dadoun, P. Lepercq, R. Roux, A. Variola, Z.F. Zomer
    LAL, Orsay
  • W. Gai, W. Liu
    ANL, Argonne
  • T. Kamitani, T. Omori, J. Urakawa
    KEK, Ibaraki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
 
 

The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by Compton process. Compton backscattering happens in a so-called "Compton ring" where an electron beam of 1.06 GeV interacts with a powerful laser beam amplified in an optical resonator. The circularly-polarized gamma rays are sent on to a target, producing pairs of longitudinally polarized electrons and positrons. An Adiabatic Matching Device maximizes the capture of the positrons. A normal-conducting 2 GHz Linac accelerates the beam up to 2.424 GeV before injection into the Pre-Damping Ring (PDR). The nominal CLIC bunch population is 4.4x109 particles per bunch. Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a "Compton Energy Recovery Linac" where a quasi-continual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three different options.