Paper | Title | Page |
---|---|---|
MO4RAI01 | Experience with DAΦNE Upgrade Including Crab Waist | 80 |
|
||
In 2007 DAΦNE was upgraded to operate in a regime of large Piwinski angle, with a novel IR optics, reduced vertical beta at the interaction point, and additional sextupoles providing for crab waist collisions. The specific luminosity was boosted by more than a factor of four, and the peak luminosity was more than doubled with respect to the maximum value obtained with the original collider configuration. The DAΦNE commissioning as well as the first experience with large Piwinski angle and crab waist collisions scheme will be reported. |
||
|
||
MO6RFP073 | Drive Laser System for the SPARC Photoinjector | 539 |
|
||
In this paper we report the status of the SPARC photocathode drive laser system. In the high brightness photoinjector the properties of the electron beam are directly related to the drive laser features. In fact the 3-D distribution of the electron beam and the time of emission are determined by the incoming laser pulse. The SPARC laser is a 10 Hz frequency-tripled TW-class Ti:Sa commercial system. A dedicated activity on the shape of the laser pulse has been performed in order to produce high energy UV flat top and multi-peaks time profile. To achieve the required flat top shape we perform a manipulation of the laser spectrum at the fundamental wavelength and directly at the third harmonic. The production of multi peaks laser pulse have been studied and tested. Finally we present the key laser performances recorded for the SPARC FEL experiment. |
||
TU5RFP076 | Mechanical Layout and Civil Infrastructures of the SPARX-FEL Complex | 1263 |
|
||
The SPARX-FEL project consists in an X-ray-FEL facility which aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1.5 and 2.4 GeV. This facility will be built in the Tor Vergata University area in Rome. The paper describe the engineering aspects of the mechanical design of the accelerator, photo-injector, LINACs, bunch compressors, beam distribution, undulators and experimental stations. Morover the integration of accelerator with the civil infrastractures is discussed. |
||
WE1PBC04 | The New RF Deflectors for the CTF3 Combiner Ring | 1812 |
|
||
To suppress the vertical beam instability in the CTF3 Combiner Ring caused by vertical trapped modes in the rf deflectors, two new devices have been constructed. In the new structures special antennas absorb the power released by the beam to the modes. They have been realized in aluminium to reduce the costs and delivery time and have been successfully installed in the ring. In the paper we illustrate the electromagnetic design, the realization procedures, the rf measurement and high power test results. |
||
|
||
WE6PFP076 | CLIC Drive Beam Frequency Multiplication System Design | 2673 |
|
||
The CLIC drive beam current, produced by the 1 GHZ fully loaded Linac, will be multiplied by a factor of 24 by the frequency multiplication system, to generate the high power beam representing the CLIC power source. The frequency multiplication system is composed by one delay loop plus two combiner rings. All rings will be isochronous, will contain trajectory tuning wigglers, and all magnets will be normal conducting. The design of the rings, with special emphasis on the rf deflectors characteristics, is presented. |
||
TH4PBC05 | Recent Results of the SPARC FEL Experiments | 3178 |
|
||
The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed. |
||
|