Paper | Title | Page |
---|---|---|
WE5PFP065 | Development of RF System Model for CERN Linac2 Tanks | 2156 |
|
||
An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems. |
||
FR5REP051 | Design of the Pi-Mode Structure (PIMS) for Linac4 | 4881 |
|
||
The PIMS will accelerate an H- beam from 100 MeV to 160 MeV, the output energy of Linac4. The cell length is constant within each of the 12 seven-cell cavities, but increases from cavity to cavity according to the increasing beam velocity. Its mechanical design is derived from the five-cell normal conducting LEP cavities, which were in operation at CERN for approximately 15 years. Even though the shunt impedance is around 10% lower than for a Side-Coupled Linac (SCL) operating at 704 MHz, the PIMS has the advantage of using the same RF frequency (352 MHz) as all the other accelerating structures in Linac4, thus simplifying and standardising the linac RF system. Furthermore, the simplified mechanical construction of the PIMS, which uses only 84 cells instead of over 400 for the SCL, also reduces construction costs and tuning effort. In this paper we present the electromagnetic design of the PIMS, including the arguments for the choice of a 5% cell-to-cell coupling factor, the shape of the coupling cells, the dimensioning of the wave-guide ports, and the expected field errors during operation. |
||
FR5REP052 | Construction Status of Linac4 | 4884 |
|
||
The civil engineering works of the Linac4 linear accelerator at CERN started in October 2008 and regular machine operation is foreseen for 2013. Linac4 will accelerate H- ions to an energy of 160 MeV for injection into the PS Booster (PSB). It will thus replace the ageing Linac2, which presently injects at 50 MeV into the PSB, and it will also represents the first step in the injector upgrade for the LHC aiming at increasing its luminosity. This paper reports on the status of the design and construction of the main machine elements, which will be installed in the linac tunnel from the beginning of 2012 onwards, on the progress of the civil engineering and on the ongoing activities at the Linac4 test stand. |
||
FR5REP053 | Higher Order Modes in the SC Cavities of the SPL | 4887 |
|
||
In this paper is analysed the influence of Higher Order Modes (HOM) on the operation of the superconducting linac section of the SPL, the Superconducting Proton Linac being designed at CERN. For this purpose, the characteristics of the HOMs in the 2 different beta families (0.65, 0.92 both at 704 MHz) of the SPL are calculated to estimate their effect on the cryogenic system and on the beam stability. For both criteria the maximum external Q of the HOMs is defined. |
||
FR5REP054 | The Linac4 DTL Prototype: Theoretical Model, Simulations and Low Power Measurements | 4890 |
|
||
A one meter long hot prototype of the LINAC4 DTL, built in a collaboration with INFN Legnaro, was delivered to CERN in 2008. It was then copper plated at CERN is and is presently prepared for high-power testing at the CERN test stand in SM18. In this paper we present 2D/3D simulations and the first RF low-power measurements to verify the electromagnetic properties of the cavity and to tune it before the high-power RF tests. In particular, the influence of the post couplers was studied in order to guarantee stabilization of the accelerating field during operation. We present an equivalent circuit model of the DTL, together with a comparison of 3D simulations and measurement results for the hot model. |