Paper | Title | Page |
---|---|---|
MO4RAC04 | First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC | 91 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC. |
||
|
||
TH6PFP015 | Minimizing Emittance Growth during H- Injection in the AGS Booster | 3729 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. As part of the efforts to increase polarization and luminosity in RHIC during polarized proton operations we have modified the injection optics and stripping foil geometry in the AGS Booster in order to reduce the emittance growth during H- injection. In this paper we describe the modifications, the injection process, and present results from beam experiments. |
||
FR1GRC04 | AGS Polarized Proton Operation in Run 2009 | 4251 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After installation of two partial snakes in the Brookhaven Alternating Gradient Synchrotron (AGS), a polarized proton beam with 1.5*1011 intensity and 65% polarization has been achieved. There are residual polarization losses due to horizontal resonances over the whole energy ramp and some polarization loss due to vertical intrinsic resonances. Many efforts have been put in to reduce the emittances coming into the AGS and to consequently reduce polarization loss. This paper presents the accelerator setup and preliminary results from run-9 operations. |
||
|