Paper | Title | Page |
---|---|---|
TU4PBC03 | Performance Comparison of the Single-Cell Large Grain Cavities Treated by EP and CP | 783 |
|
||
Funding: Supported by National Natural Science Foundation of China (10525525) 1.3 GHz single cell large grain (LG) cavities have been studied in our research programs on the superconducting cavity for the International Linear Collider (ILC) in the last three years and five LG cavities were fabricated at IHEP and KEK. Three cavities were dealt with by surface treatments based on electro polishing (EP) and the maximum gradient of 47.90 MV/m was achieved. The other two cavities were treated based on chemical polishing (CP) and both reached the accelerating gradients higher than 35 MV/m with the maximum gradient of 40.27 MV/m. In this paper, the performance comparison of the large grain cavities will be presented and discussed. |
||
|
||
TU5PFP038 | ILC 1.3 GHz Superconducting RF Technology Development Program at IHEP | 906 |
|
||
Funding: NSFC 10525525 With the aim to develop 1.3 GHz superconducting radio-frequency (SCRF) technology in the frame of ILC collaboration, IHEP has started a program to build a SCRF Accelerating Unit. This unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner, a low level RF system and a high power RF source, etc. This program also includes the SCRF laboratory upgrade, which will permit the unit to be built and tested at IHEP. We will use this unit as a horizontal test stand for many 9-cell cavities and other components (e.g. input couplers, tuners), as in Europe and North America. In this paper, we report the recent R&D status and the future plan of this program. |
||
WE6PFP024 | ATF2 Ultra-Low IP Betas Proposal | 2540 |
|
||
The CLIC Final Focus System has considerably larger chromaticity than those of ILC and its scaled test machine ATF2. We propose to reduce the IP betas of ATF2 to reach a CLIC-like chromaticity. This would also allow to study the FFS tuning difficulty as function of the IP beam spot size. Both the ILC and CLIC projects will largely benefit from the ATF2 experience at these ultra-low IP betas. |
||
WE6RFP008 | Design of a 1.3 GHZ Single 9 Cell SC Cavity Test Cryomodule for ILC Collaboration at IHEP | 2796 |
|
||
Funding: Work supported by NSFC 10525525 In order to obtain the design, manufacture and operational experiences on the SRF cryomodule toward ILC, a test cryomodule for 1.3GHz single 9-cell SC cavity was designed by IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) jointly. This cryomodule will be used as a 1.3GHz 9 cell SC cavity horizontal test facility. The cryogenic system for the cryomodule is designed and will be operated at 2.0K, with the saturated superfluid helium. The major requirements, design, simulation results of the cryomodule are reported in the paper. This key component of a superconducting accelerator test unit will be built in the near future at IHEP. |
||
TH6PFP024 | Beam Waist Manipulations at the ATF2 Interaction Point | 3747 |
|
||
Funding: NSFC 10525525 and 10775154. CNRS-IN2P3 and ANR. The ATF2 project is the final focus system prototype for ILC and CLIC linear collider projects, with a purpose to reach a 37nm vertical beam size at the interaction point. We report on techniques developed based on simulation studies to adjust the horizontal and vertical beam waists independently in the presence of errors, at two different IP locations where the beam size can be measured with different accuracies. During initial commissioning, we will start with larger than nominal β-functions at the IP, to reduce the effects from higher-order optical aberrations and thereby simplify the optical corrections needed. The first measurements in such intermediate β-configurations are reported. |
||
TH6PFP025 | Design Study of the CLIC Booster Linac with FODO Lattice | 3750 |
|
||
A new design of the 6.6GeV Booster linac for CLIC which is based on the FODO lattice is presented in this note. Particle tracking studies using PLACET [1] are performed in order to estimate the single-bunch and multi-bunch emittance growth. First, the studies of optics are introduced. Then, the sing-bunch effects and multi-bunch effects are studied in the last two part of this note. |
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|