Paper | Title | Page |
---|---|---|
TU5PFP005 | Transfer Matrix Method Used in RF Tuning on DTL for CSNS | 812 |
|
||
In the conventional 324 MHz DTL designed for China Spallation Neutron Source (CSNS) accelerating H- ion from 3MeV to 132MeV, there are 7 tanks and currently the R&D of tank-1 is under proceeding, which has 29 cells and 29 quadrupoles. In design, the Tank-1 has a tilt field distributed partially in order to obtain most effective energy gain and low Kilpatric parameter. In order to decrease the difficulty of tuning the partial tilt field distribution, a new analysis named transfer matrix method is introduced. Verifying of the calculation and simulation of the transfer matrix has been finished with MDTFISH code, picking parameters from CSNS and SNS. Checking the method on the model tank in CSNS will be operated. |
||
TU6PFP035 | Compact Pulsed Hadron Source - A University-Based Accelerator Platform for Multidisciplinary Neutron and Proton Applications | 1360 |
|
||
Funding: Supported by the “985 Project” of the Minister of Education of China, CAS Bairen Init. (KJCX2-YW-N22), CAS Overseas Outstanding Youth Program, and the National Natural Science Foundation (10628510). During the past decades, large-scale national neutron sources are developed in Asia, Europe, and USA. Complementing such efforts, compact hadron beam complexes and neutron sources intended for universities and industrial institutes are proposed and established. Responding to the demands in China for multidisciplinary researches and applications using pulsed neutrons and protons, hadron therapy and radiography, and accelerator-driven sub-critical reactor systems (ADS) for nuclear waste transmutation, we here propose a compact yet expandable accelerator complex based on a proton source, a 3 MeV RFQ linac, and a 22 MeV DTL linac. A Be target with solid methane and room-temperature water moderators serve 6 neutron stations for imaging/radiography, irradiation, SANS, engineering powder diffraction, instrumentation, and therapy. The proton platform serves multiple stations for bio-applications, fuel cell and nano-applications, and space irradiation and detection. A rapid cycling synchrotron subsequently accelerates the beam to up to 300 MeV for proton therapy and radiography. Following the DTL linac with a superconducting RF linac and a sub-critical reactor offers an ADS test facility. |
||
WE4PBC03 | A High-Duty Factor Radio-Frequency Quadrupole Accelerator for ADS Study in China | 1955 |
|
||
A high-duty factor proton RFQ accelerator has been constructed at IHEP, Beijing for the basic study of Accelerator Driven Subcritical System. The ADS basic study is supported by a national program for nuclear waste transmutation which is regarded essential for the rapid development of nuclear power plants in China. In the initial commissioning of the 3.5MeV RFQ with an ECR ion source showed a nice performance with a transmission rate about 93% with an output beam of 46mA. The 352MHz RFQ is design for CW operation with the RF power source from LEP-II of CERN. This paper presents the beam commissioning and recent progress in high-duty factor operation from 7% to 15%. |
||
|
||
TH1GRI02 | Status of the China Spallation Neutron Source Project | 3053 |
|
||
CSNS accelerator mainly consists of an H- linac and a proton rapid cycling synchrotron. It is designed to accelerate proton beam pulses to 1.6 GeV kinetic energy at 25 Hz repetition rate, striking a solid metal target to produce spallation neutrons. The accelerator is designed to deliver a beam power of 120 kW with the upgrade capability up to 500 kW, The CSNS accelerator is the first large-scale, high-power accelerator project to be constructed in China and thus we are facing a lot of challenges in some key technologies. A series of R&D for major prototypes have being conducted since 2006, including an H- ion source, DTL tank, RF power supply for the linac, injection/extraction magnets and its pulse power supplies, dipole and quadrupole prototype magnets in the ring and its power supplies, ferrite-loaded RF prototype cavity, ceramic vacuum chamber, control and some beam diagnostics. This paper will briefly introduce the design and R&D status of the CSNS accelerator. |
||
|
||
TH5PFP024 | Space-Charge Driven Emittance Coupling in CSNS Linac | 3245 |
|
||
In the conventional design of rf linacs, the space-charges are not in three-dimension thermal equilibrium. The space-charge couples the longitudinal and transverse will cause equipartitioning process which causes the emittance growth and the halo formation. In the design of the Chinese Spallation Neutron Source (CSNS) linac], three cases are investigated using the Hofmann stability charts to analysis and optimize the layout. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac. |
||
TH5RFP022 | Ionization Beam Profile Monitor Designed for CSNS | 3494 |
|
||
A set of IPM system will be built on RCS of CSNS to measure vertical and horizontal beam profiles. Detailed conceptual design of an IPM system for CSNS is described in this paper. Wire electrodes are introduced to get a more uniform electric field, and a ‘C’ type electromagnet is designed to exert a uniform magnetic field to the ionization area. The magnetic field is parallel with the sweeping electric field and will inhibit the defocusing effects of space charge and recoil momentum. |
||
TH5RFP053 | Design and Simulation of the Wire Scanner for Halo Formation Measurements in an Intense Beam RFQ Linac | 3573 |
|
||
A high current proton RFQ accelerator has been constructed in China for the basic study of Accelerator Driven Subcritical System. A new beam line will be set up for the 3.54MeV, 50mA proton beam from the RFQ in order to study beam halo phenomenon. Therefore, 18 wire scanners consist of a thin carbon wire and two scrapers will be installed on the beam line to traverse the entire beam cross-section. So we can experimentally study the beam loss and beam halo. Some simulations results of the heat on the devices by using finite element method software–ANSYS are presented. The electronics interface will also be discussed. |