A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Frigola, P.

Paper Title Page
TU6PFP046 High-Flux Inverse Compton Scattering Systems for Medical, Industrial and Security Applications 1387
 
  • S. Boucher, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • I. Jovanovic
    Purdue University, West Lafayette, Indiana
  • J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

Funding: This work is supported by the US Defense Threat Reduction Agency SBIR contract HDTRA1-08-P-0035.


Conventional X-ray sources used for medical and industrial imaging suffer from low spectral brightness, a factor which severely limits the image quality that can be obtained. X-ray sources based on Inverse Compton Scattering (ICS) hold promise to greatly improve the brightness of X-ray sources. While ICS sources have previously been demonstrated, and have produced high-peak brightness X-rays, so far experiments have produced low average flux, which limits their use for certain important commercial applications (e.g. medical imaging). RadiaBeam Technologies is currently developing a high peak- and average-brightness ICS source, which implements a number of improvements to increase the interaction repetition rate, as well as the efficiency and stability of the ICS interaction itself. In this paper, we will describe these improvements, as well as plans for future experiments.

 
TU6PFP047 Magnet Design and Testing of a FFAG Betatron for Industrial and Security Applications 1390
 
  • S. Boucher, R.B. Agustsson, P. Frigola, A.Y. Murokh, M. Ruelas
    RadiaBeam, Marina del Rey
  • F.H. O'Shea, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. RadiaBeam Technologies is currently developing an FFAG betatron with a novel induction core made with modern low-loss magnetic materials. The principle challenge in the project has been the design of the magnets. In this paper, we present the current status of the project, including results of the magnet design and testing.

 
WE1PBC05 Development of an Ultra-High Repetition Rate S-Band RF Gun for the SPARX Project 1815
 
  • L. Faillace, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Frigola
    RadiaBeam, Marina del Rey
  • A. Fukasawa, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

We present here the design, including RF modelling, cooling, and thermal stress and frequency detuning, of an S-band RF gun capable of running near 500 Hz, for application to FEL and inverse Compton scattering sources. The RF design philosophy incorporates many elements in common with the LCLS gun, but the approach to managing cooling and mechanical stress diverges significantly. We examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries. We find that this approach may enable very high repetition rate, well in excess of the nominal project this design is directed for, the SPARX FEL.


*C.Limborg et al.,“RF Design of the LCLS Gun”,LCLS Technical Note LCLS-TN-05-3
**P. Frigola et al.,“A Novel Fabrication Technique for the Production of RF Photoinjectors”,published in EPAC08.

 

slides icon

Slides

 
WE5PFP013 Development of Solid Freeform Fabrication (SFF) for the Production of RF Photoinjectors 2015
 
  • P. Frigola, R.B. Agustsson, S. Boucher, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • H. Badakov, A. Fukasawa, P. Musumeci, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • D. Cormier, T. Mahale
    NCSU, Raleigh, North Carolina
  • L. Faillace
    INFN/LNF, Frascati (Roma)
 
 

Electron beam based additive fabrication techniques have been successfully applied to produce a variety of complex, fully dense, metal structures. These methods, collectively known as Solid Freeform Fabrication (SFF) are now being explored for use in radio frequency (RF) structures. SFF technology may make it possible to design and produce near-netshape copper structures for the next generation of very high duty factor, high gradient RF photoinjectors. The SFF process discussed here, Arcam Electron Beam Melting (EBM), utilizes an electron beam to melt metal powder in a layer-by-layer fashion. The additive nature of the SFF process and its ability to produce fully dense parts are explored for the fabrication of internal cooling passages in RF photoinjectors. Following an initial feasibility study of the SFF process, we have fabricated a copper photocathode, suitable as a drop-in replacement for the UCLA 1.6 cell photoinjector, with internal cooling channels using SFF. Material analysis of the prototype cathode and new designs for a high duty factor photoinjector utilizing SFF technology will be presented.

 
WE5RFP077 Development of Dy Poles for High Temperature Superconducting Undulator Applications 2444
 
  • A.Y. Murokh, R.B. Agustsson, P. Frigola
    RadiaBeam, Marina del Rey
  • V. Solovyov
    BNL, Upton, Long Island, New York
 
 

Funding: DOE


A High Temperature Superconducting Dysprosium Pole Undulator (HTS-DPU) is proposed to achieve an ultra-high peak field in a very short period undulator structure. This design utilizes the unique ferromagnetic properties of dysprosium (Dy) at liquid nitrogen temperature. The fabrication of textured Dy fabricated via economic and highly reproducible process is studied experimentally with the goal to achieve sufficient magnetic anisotropy and desired field saturation level at a practical cost. In addition, utilizing the latest capabilities of the 2G HTS wire is investigated. The practical implementation of HTS-DPU would enable the development of short period insertion devices with superior performance.

 
FR5RFP015 Testing of a Laser-Powered, Slab-Symmetric Dielectric Structure for Medical and Industrial Applications 4562
 
  • S. Boucher, P. Frigola
    RadiaBeam, Marina del Rey
  • E.R. Arab, G. Travish, N. Vartanian
    UCLA, Los Angeles, California
  • R.B. Yoder
    Manhattanville College, Purchase, NY
 
 

Funding: This project is supported by DOE SBIR Grant DE-FG02-08ER85038.


Laser-powered dielectric accelerating structures, which have attracted attention in recent years, trade fabrication challenges and extremely small beam apertures for the promise of high gradients and new bunch formats. The slab-symmetric, periodically-coupledμAccelerator Platform (MAP) is one such dielectric accelerator, and has been under development through a RadiaBeam-UCLA collaboration for several years. Intended applications of the structure include the production of radiation for medical treatments, imaging, and industrial uses. Prototype MAP structures are now being fabricated, and a program has been undertaken to test this device using externally injected electron beams. Plans are underway to install structures in the E163 facility at SLAC. In this paper we describe the testing methods, diagnostics and expectations. Progress and results to date are also presented.