Paper | Title | Page |
---|---|---|
WE6RFP071 | Emission of Collimated X-Ray Radiation in Laser-Wakefield Experiments Using Particle Tracking in PIC Simulations | 2958 |
|
||
Funding: F.C.Gulbenkian, F.C.T. [SFRH/BD/35749/2007, SFRH/BD/39523/2007, PTDC/FIS/66823/2006 (Portugal)], and European Community (project EuroLeap, contract #028514) It is now accepted that self-trapped electrons in a laser wakefield accelerator operating in the "bubble" regime undergo strong periodic oscillations about the wakefield axis because of the focusing force provided by the ions. This betatron motion of the off-axis electrons results in the emission of x-ray radiation strongly peaked in the forward direction. Even though the x-rays are broadband with a synchrotron-like spectrum, their brightness can be quite high because of their short pulse duration and strong collimation. We employ particle tracking in particle in cell simulations with OSIRIS*, combined with a post-processing radiation diagnostic, to evaluate the features of the radiation mechanisms of accelerated electrons in LWFA experiments. We show and discuss results for a 1.5 GeV laser wakefield accelerator stage. A study of the angular dependence of the radiated power is also presented and compared with theoretical models. This analysis also allows for the direct calculation of the radiation losses of the self-injected bunch. *R. A. Fonseca et al, LNCS 2329, III-342, Springer-Verlag, (2002) |
||
TH4GBC05 | Boosted Frame PIC Simulations of LWFA: Towards the Energy Frontier | 3160 |
|
||
Funding: F.C.Gulbenkian, F.C.T. [SFRH/BD/35749/2007, PTDC/FIS/66823/2006 (Portugal)], and European Community - New and Emerging Science and Technology Activity, FP6 program (project EuroLeap, contract #028514) We address full particle-in-cell simulations of the next generation of Laser Wakefield Accelerators with energy gains > 10 GeV. The distances involved in these numerical experiments are very demanding in terms of computational resources and are not yet possible to (easily) accomplish. Following the work on simulations of particle beam-plasma interaction scenarios in optimized Lorentz frames by J.-L. Vay*, the Lorentz transformation for a boosted frame was implemented in OSIRIS**, leading to a dramatic change in the computational resources required to model LWFA. The critical implementation details will be presented, and the main difficulties discussed. Quantitative comparisons between lab/boost frame results with OSIRIS, QuickPIC***, and experiment will be given. Finally, the results of a three-dimensional PIC simulation of a > 10 GeV accelerator stage will be presented, including a discussion on radiation emission. * J.-L. Vay, PRL 98, 130405 (2007) |
||
|