A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fliller, R.P.

Paper Title Page
TU3GRI03 NSLS-II Beam Diagnostics Overview 746
 
  • O. Singh, R. Alforque, B. Bacha, A. Blednykh, P. Cameron, W.X. Cheng, L.R. Dalesio, A.J. Della Penna, L. Doom, R.P. Fliller, G. Ganetis, R. Heese, H.-C. Hseuh, E.D. Johnson, B.N. Kosciuk, S.L. Kramer, S. Krinsky, J. Mead, S. Ozaki, D. Padrazo, I. Pinayev, V. Ravindranath, J. Rose, T.V. Shaftan, S. Sharma, J. Skaritka, T. Tanabe, Y. Tian, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York
 
 

A new 3rd generation light source (NSLS-II project) is in the early stage of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges in the diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research & development activities; and then focus on other challenging aspects.

 

slides icon

Slides

 
TU5RFP006 Beam Transport and Diagnostics for the NSLS-II Injection System 1096
 
  • R.P. Fliller, R. Alforque, R. Heese, R. Meier, J. Rose, T.V. Shaftan, O. Singh, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

The NSLS II is a state of the art 3 GeV synchrotron light source being developed at BNL. The injection system will consist of a 200 MeV linac and a 3GeVbooster synchrotron. The transport lines between the linac and booster (LtB) and the booster and storage ring (BtS) must satify a number of requirements. In addition to transporting the beam while mantaining the beam emittance, these lines must allow for commissioning, provide appropriate diagnostics, allow for the appropriate safety devices and and in the case of the BtS line, provide for a stable beam for top off injection. Appropriate diagnostics are also necessary in the linac and booster to complement the measurements in the transfer lines. In this paper we discuss the design of the transfer lines for the NSLSII along with the incorporated diagnostics and safety systems. Necessary diagnostics in the linac and booster are also discussed.

 
TU5RFP007 NSLS-II Booster Acceptance Studies 1099
 
  • R.P. Fliller, W. Guo, R. Heese, Y. Li, T.V. Shaftan
    BNL, Upton, Long Island, New York
 
 

The NSLS II is a state of the art 3 GeV synchrotron light source being developed at BNL. The injection system will consist of a 200 MeV linac and a 3GeV booster synchrotron. The injection system must supply 7.3nC every minute to satisfy the top off requirements. A large booster acceptance is neccessary to have a high booster injection efficiency and alleviate the requirements on linac gun. We also anticipate transverse stacking of bunches in the booster to increase the amount of charge that can be delivered. We present studies of the anticipated booster stay clear including lattice errors and the ramifications for injection efficiency and transverse stacking.

 
TU5RFP009 NSLS-II Pulsed Magnet Design Considerations 1105
 
  • R. Heese, R.P. Fliller, R. Meier, B. Parker, M. Rehak, T.V. Shaftan, F.J. Willeke, P. Zuhoski
    BNL, Upton, Long Island, New York
  • E. Weihreter
    BESSY GmbH, Berlin
 
 

NSLS-II injection system contains 13 pulsed magnets and their power supplies for injection in and extraction from the booster and injection in the storage ring. Requirement of having injection process transparent for the NSLS-II users translates into challenging specifications for the pulsed magnet design. To keep the beam jitter within 10% of radiation source size, relative kicker mismatch must be kept on 10-5 level and residual vertical field must be below few gauss in amplitude. In this paper we discuss specifications for the pulsed magnets, their preliminary design and parameters' tolerances.

 
TU5RFP012 Alternative Designs of the NSLS-II Injection Straight Section 1114
 
  • T.V. Shaftan, R.P. Fliller, R. Heese, E.D. Johnson, R. Meier, M. Rehak, F.J. Willeke
    BNL, Upton, Long Island, New York
  • E. Weihreter
    BESSY GmbH, Berlin
 
 

The NSLS-II is a state of the art 3 GeV synchrotron light source that is being developed at BNL. The 9.3 meter long injection straight section of NSLS-II storage ring currently fits a conventional injection set-up that consists of four kickers producing a closed bump together with a DC septum and a pulsed septum. In this paper we analyze alternative options based on: a) injection via a pulsed sextupole and b) injection with a Lambertson septum. We discuss dynamics of the injected and stored beams and, consequently, magnet specifications and tolerances. In conclusion we summarize advantages and drawbacks of each injection scheme.

 
FR5PFP020 Emittance Exchange at the Fermilab A0 Photoinjector 4350
 
  • T.W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • H.T. Edwards, A.S. Johnson, A.H. Lumpkin, J. Ruan, Y.-E. Sun, R. Thurman-Keup
    Fermilab, Batavia
  • R.P. Fliller
    BNL, Upton, Long Island, New York
 
 

A transverse to longitudinal emittance exchange experiment is installed at the Fermilab A0 Photoinjector. We report on the completed measurement of emittance exchange transport matrix as well as the ongoing program to directly measure the emittance exchange. Both the transverse and longitudinal input beam parameters are being explored in order to achieve direct emittance exchange with minimal dilution effects

 
TU4PBI01 Emittance Exchange Results 773
 
  • R.P. Fliller
    Fermilab, Batavia
  • T.W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
 
 

Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. Experiments as the A0 photoinjector exchange a large longitudinal emittance with a small trasverse emittance. AWA expects to exchange a large transvserse emittance with a small logitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

 

slides icon

Slides

 
TH5RFP042 Bunch Length Monitoring at the A0 Photoinjector Using a Quasi-Optical Schottky Detector 3543
 
  • G.M. Kazakevich, M.A. Davidsaver, H.T. Edwards, R.P. Fliller, T.W. Koeth, A.H. Lumpkin, S. Nagaitsev, J. Ruan, R. Thurman-Keup
    Fermilab, Batavia
  • Y.U. Jeong
    KAERI, Daejon
  • V.V. Kubarev
    BINP SB RAS, Novosibirsk
 
 

Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.


Noninvasive bunch duration monitoring has a crucial importance for modern accelerators intended for short wavelength FEL’s, colliders and in some beam dynamics experiments. Monitoring of the bunch compression in the Emittance Exchange Experiment at the A0 Photoinjector was done using a parametric presentation of the bunch duration via Coherent Synchrotron Radiation (CSR) emitted in a dipole magnet and measured with a wide-band quasi-optical Schottky Barrier Detector (SBD). The monitoring resulted in a mapping of the quadrupole parameters allowing a determination of the region of highest compression of the bunch in the sub-picosecond range. The obtained data were compared with those measured using the streak camera. A description of the technique and the results of simulations and measurements are presented and discussed in this report.