Paper | Title | Page |
---|---|---|
MO3RAC05 | Dynamic Beta/Emittance Effects in the Measurement of Horizontal Beam Sizes | 41 |
|
||
It is well known that the beam-beam interaction has a focusing effect and therefore causes a dynamical beating of beta function around the rings. This effect becomes greatly enhanced when a collider, such as KEKB, is operated near half integer. The beating makes it difficult to interpret the measurement of horizontal beam size. We derived two coupled nonlinear equations and solved them analytically to obtain the beam sizes at the interaction points, taking into account of dynamical beta and emittance. It has been demonstrated its effectiveness using actual measured data at the synchrotron light monitors. It is expected that it will be implemented in the control room. |
||
|
||
WE6PFP043 | Recent Progress of KEKB | 2588 |
|
||
Crab cavities were installed at KEKB at the beginning of 2007. The beam operation with the crab cavities is in progress. In this paper, machine performance with crab crossing is described focusing on a specific luminosity and a beam lifetime issue related to the dynamic beam-beam effects. |
||
TH5RFP026 | CESRTA X-Ray Beam Size Monitor Design | 3503 |
|
||
Funding: NSF We report on the performance goals and design of the CESRTA x-ray beam size monitor (xBSM). The xBSM resolution must be sufficient to measure vertical beam sizes under 20um. The xBSM images 2–4keV synchrotron radiation photons onto one-dimensional photodiode array. Instrumentation in the dedicated x-ray beam line includes upstream interchangeable optics elements (slits, coded apertures, and Fresnel zone plates), a monochrometer and the InGaAs photodiode detector. To provide sufficient x-ray flux in 2 GeV operation, the beam line is evacuated, with only a thin diamond window isolating the detector vacuum from the damping ring. The readout is a beam-synchronized FADC that is sufficient to measure consecutive bunches independently in a 4ns bunch spacing configuration. |
||
TH5RFP027 | First Results from the CESRTA X-Ray Beam Size Monitor | 3505 |
|
||
Funding: NSF Engineering data sets were collected with the CESRTA x-ray beam size monitor (xBSM) during November 2008 and January 2009 runs. We report on the performance of the InGaAs photodiode array detector, including time response and signal-to-noise. We report on the observed measurement resolution for changes in the damping ring vertical beam size using the interchangeable optics elements: slits, coded apertures, and a Fresnel zone plates. Observed resolutions are compared to predictions based on characteristics of the optics elements. |
||
TH5RFP048 | Performance of Coded Aperture X-Ray Optics with Low Emittance Beam at CesrTA | 3561 |
|
||
Funding: Work supported in part by the US-Japan Cooperation Program We are working on the development of a high-speed x-ray beam profile monitor for high-resolution and fast response for beam profile measurements to be used at CesrTA and SuperKEKB*. The optics for the monitor are based on a technique borrowed from x-ray astronomy, coded-aperture imaging, which should permit broad-spectrum, low-distortion measurements to maximize the observable photon flux per bunch. Coupled with a high-speed digitizer system, the goal is to make turn-by-turn, bunch-by-bunch beam profile measurements. Following initial tests with a low-resolution mask at large beam sizes (vertical size ~200 um), a high-resolution mask has been made for use with low-emittance beams (vertical size ~10 um) at CesrTA. The first performance results of the high-resolution mask on the low-emittance CesrTA beam are presented. *J.W. Flanagan et al., Proc. EPAC08, Genoa, {10}29 (2008). |
||
FR5RFP083 | Measurements, Analysis, and Simulation of Microwave Instability in the Low Energy Ring of KEKB | 4731 |
|
||
Using a streak camera, we measured the longitudinal profiles of a positron bunch in the Low Energy Ring (LER) of KEKB at various currents. The measured charge densities were used to construct a simple Q=1 broadband impedance model. The model with three parameters not only gave an excellent description of longitudinal dynamics for a positive momentum compaction factor but also for the negative ones, including bunch shortening bellow a threshold and bursting modes beyond the threshold. Furthermore, our study indicated that the threshold of microwave instability was about 0.5 mA in bunch current in the LER. At the nominal operating current 1.0 mA, there was a 20% increase of the energy spread. The results of measurement, analysis, and simulations will be presented in this paper. |
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|