Paper | Title | Page |
---|---|---|
TU5RFP004 | Observation of Ion Induced Effects and their Impact on the Performance of the MLS Electron Storage Ring | 1090 |
|
||
Funding: Work funded by Physikalisch-Technische Bundesanstalt The Metrology Light Source (MLS) [1] is in user operation since 2008 at operating energies ranging from 105 MeV up to 630 MeV and with multi bunch currents up to 200 mA. At the injection energy of 105 MeV as soon as the beam current exceeds a few mA, the beam is strongly blown up in all three spatial dimensions and strong oscillations at very different spectral frequencies can be observed. These effects are caused by the interaction of beam charge with ions present and their strength and characteristic time scales depend on several machine parameters. As ion effects can strongly deteriorate the performance of the MLS, we report on first investigations. |
||
TU5RFP005 | Low Alpha Operation of the MLS Electron Storage Ring | 1093 |
|
||
The Metrology Light Source (MLS)* is in user operation since April 1st, 2008. It is the first storage ring designed and built for operation in the low α mode, which relies on the control of higher order terms of the momentum compaction factor α with respect to the momentum deviation dp/p, α=a0+a1*dp/p+a2*(dp/p)**2. The a0 term is controlled by quadrupoles, a1 by 3 families of sextupoles for controlling the chromaticity in the transverse and longitudinal planes, the a2 term is controlled by an octupole family. The a0 value can be varied by more than a factor of {10}00. The low α mode is also called 'isochronous' operation, it is used for short bunch operation, where intense signals of coherent sub-THz radiation are produced. We report on operation experience of this scheme. *R. Klein et al., 'Operation of the Metrology Light Source as a primary radiation source standard', |
||
TU5RFP027 | Observation of Coherent THz Radiation from the ANKA and MLS Storage Rings with a Hot Electron Bolometer | 1153 |
|
||
Funding: This work has partly been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320. In synchrotron radiation sources coherent radiation is emitted when the bunch length is comparable to or shorter than the wavelength of the emitted radiation. A detector system based on a superconducting NbN ultra-fast bolometer with an intrinsic response time of about 100 ps jointly developed by the University of Karlsruhe (Institute of micro- and nanoelectronic systems) and German Aerospace Center (Berlin) was used to resolve the radiation emitted from single bunches. This paper reports the observations made during measurements at the MLS and ANKA storage rings. |
||
TU5RFP029 | Cherenkov Fibers for Beam Diagnostics at the Metrology Light Source | 1159 |
|
||
The 0.6 GeV storage ring Metrology Light Source (MLS) is in operation since April 2008. Recently, Cherenkov glass fibers have been installed for a temporal and spatial detection of electron beam losses. Based on this information the loss mechanisms can be studied in detail and the performance of the machine can be optimized. First experiments with this diagnostic tool will be presented. |
||
WE1RAC05 | Automated Operation of the MLS Electron Storage Ring | 1798 |
|
||
The Metrology Light Source (MLS) is in user operation since April 2008 working at energies ranging from {10}5 MeV up to 630 MeV, operating currents from a single electron up to 200 mA and different values for the momentum compaction factor. In parallel to machine commissioning, an automated finite state machine has been developed. This code knows, controls and coordinates a broad manifold of machine states and meanwhile has been evolved to an automated operator acting by itself on demand of a few high level commands. Actions range from plain device I/O to complex transactions including filesystem operations and multiple device I/O. The aim is to always keep machine and control system in a well-defined state. We describe the program and report on the experience with the automated operation using this application. |
||
|
||
WE5RFP011 | Characterization of MLS THz Radiation at a Dedicated Beamline | 2288 |
|
||
The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute is operating the low-energy electron storage ring Metrology Light Source (MLS) in Berlin-Adlershof in close cooperation with the BESSY GmbH. The MLS is designed and prepared for a special machine optics mode (low-alpha operation mode) based on a sextupole and octupole correction scheme, for the production of coherent synchrotron radiation in the FIR and THz region. At the MLS two bending magnet beamlines dedicated to the use of IR and THz synchrotron radiation were built. An IR beamline optimized for the MIR to FIR is now in operation. First measurements at this beamline showed the potential of the MLS as a source of THz radiation*. However, the propagation of sub-terahertz electromagnetic waves from the source point to the experiment through such a typical IR beamline is strongly affected by diffraction. This is why we decided to build a dedicated THz beamline with larger extraction optics. We present first results from the commissioning of the dedicated THz beamline. *R. Müller et al., Proc. of EPAC08, 2058 (2008) |