Paper | Title | Page |
---|---|---|
TH6PFP042 | The 4 GeV H- Beam Transfer Line from the SPL to the PS2 | 3799 |
|
||
The proposed new CERN injector chain LINAC4, SPL, PS2 will require the construction of new beam transfer lines. A preliminary design has been performed for the 4 GeV SPL to PS2 H- transfer line. The constraints, beam parameters and geometry requirements are summarised and a possible layout proposed, together with the magnet specifications. First considerations on longitudinal beam dynamics and on beam loss limitations from H- lifetime are presented. |
||
FR5REP055 | Linac4 Beam Characterisation before Injection into the CERN PS Booster | 4893 |
|
||
Construction work for the new CERN linear accelerator, Linac4, started in October 2008. Linac4 will replace the existing Linac2 and provide an H- beam at 160 MeV (as opposed to the present 50 MeV proton beam) for injection into the CERN PS Booster (PSB). The charge-exchange H- injection combined with the higher beam energy will allow for an increase in beam brightness required for reaching the ultimate LHC luminosity. Commissioning of Linac4 and of the transfer line to the PSB is planned for the last quarter of 2012. Appropriate beam instrumentation is foreseen to provide transverse and longitudinal beam characterization at the exit of Linac4 and in two dedicated measurement lines located before injection into the PSB. A detailed description of the diagnostics set, especially of spectrometer and emittance meter, and the upgrade of the measurement lines for Linac4 commissioning and operation is presented. |
||
TU6PFP083 | Conceptual Design of the ESS-Scandinavia | 1485 |
|
||
Funding: ESS-S Scandinavia Consortium The conceptual design of the European Spallation Source-Scandinavia (ESS-S) is presented. The accelerator system baseline draws heavily on state-of-the-art mature technologies that are being employed in the CERN Linac4 and SPL projects, although advances with spoke resonator and sputtered superconducting cavities are also being evaluated for reliable performance. Irradiation damage due to proton beam losses is a key issue for linac and target components. Their optimized design is performed from an engineering perspective, using the last updated versions of mechanical design codes which were already qualified for irradiated components. Finally, future upgrades of power and intensity of the proton linac are considered, including the design optimization of the Target Station (proton/neutron convertor), with the possibility of increasing the average pulsed power deposition up to 7.5 MW. All possible upgrades will be taken into account for the final design review, in the frame of the costs and constraints given with the site decision. |