A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Erdelyi, B.

Paper Title Page
TH6PFP005 Beam Purity Studies for a Facility for Rare Isotope Beams 3699
 
  • L.L. Bandura, B. Erdelyi, J.A. Nolen
    ANL, Argonne
  • L.L. Bandura
    Northern Illinois University, DeKalb, Illinois
 
 

An exotic beam facility for the production of rare isotopes such as the Facility for Rare Isotope Beams (FRIB) at Michigan State University will require a high resolution fragment separator to separate isotopes of varying mass and charge. The goal of the fragment separator is to produce a high-purity beam of one rare isotope. Sources of contamination in a beam such as this are isotopes with a similar magnetic rigidity to the separated isotope and those which are produced by fragmentation in the energy degrader. This can be particularly detrimental when a contaminating isotope has a large cross section. Here we investigate beam purity as a function of the separated isotope and the type of fragment separator setup used, i.e. one stage, two stage, or one stage with gas cell branch.

 
TH6PFP086 Single Particle Dynamics in the University of Maryland Electron Ring 3904
 
  • E.W. Nissen, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois
  • S. Bernal, D.F. Sutter
    UMD, College Park, Maryland
 
 

We undertake a study of the single particle dynamics in a model of the University of Maryland Electron Ring. This accelerator uses a low energy electron beam to study the effects of space charge on beam dynamics. However, due to this low energy, other effects that are seldom taken into account in high energy accelerators become important to the single particle dynamics of the beam. The simulation is performed using COSY Infinity, which has the effects of the earth’s magnetic field added to it. When the simulated trajectories are compared to measured beam positions there is good agreement through the ninth section of the ring, at which point the difference between predicted and observed diverges. A method of calculating map elements corresponding to the measured data will be used to determine where issues with the ring that could cause these problems might be found.