Paper | Title | Page |
---|---|---|
TU5PFP080 | Design, Construction, System Integration, and Test Results of the 1 MW CW RF System for the E-Gun Cavity in the Energy Recovery Linac at Brookhaven National Laboratory | 1014 |
|
||
Funding: DoE Contract No. DE-AC02-98CH10886 Brookhaven’s ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPI, Inc. provides RF power of 1 MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CW. The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut down mode no crowbar circuit is needed. Continental’s transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1 MW system. |
||
WE3RAC03 | High-Power Test Results of a 10 MW, High Efficiency, L-Band Multiple Beam Klystron | 1876 |
|
||
Funding: The authors would like to thank DESY for their support. In addition, we appreciate SLAC helping us out with test equipment. CPI has designed and is currently in the process of building a prototype of a horizontally oriented multiple beam klystron (MBK) required to provide at least 10 MW peak rf output and 65% efficiency at 1300 MHz and 1.5% rf duty. The klystron was ordered by DESY for the European XFEL. In our design six off-axis electron beams go through seven ring resonators operating in the fundamental-mode. This ensures sufficient beam separation for longer cathode life while keeping the overall diameter of the device small. The MBK was designed using sate-of-the-art multi-dimensional design codes which showed that it was exceeding all performance requirements. First rf hot test data at reduced duty produced 11.2 MW peak saturated rf output and 74% efficiency, which was however accompanied by high beam interception. Initial optimization of the electromagnet resulted in a 70% reduction of the rf body current, but at the expense of rf output power, efficiency (down to 67%) and gain. The magnetic field balance has to be further optimized for low body current and high efficiency at all required operating conditions. Complete test data after optimization and tuning will be presented at the conference. |
||
|