A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Decker, G.

Paper Title Page
MO3PBI01 Possible Upgrade of the Advanced Photon Source with an Energy Recovery Linac 44
 
  • M. Borland, G. Decker, X.W. Dong, L. Emery, R. Nassiri
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


The Advanced Photon Source (APS) is a third-generation storage-ring-based x-ray source that has been operating for more than 11 years and is enjoying a long period of stable, reliable operation. While APS is presently providing state-of-the-art performance to its large user community, we must clearly plan for improvements and upgrades to stay at the forefront scientifically. Significant improvements should be possible through upgrades of beamline optics, detectors, and end-station equipment, along with local, evolutionary changes to the storage ring itself. However, major accelerator upgrades are also being investigated. One very promising option that has been the subject of considerable research is the use of an energy recovery linac. In this option, APS would transition from a source based on a stored electron beam to one based on a continuously generated high-brightness electron beam from a linac. Such a source promises dramatically improved brightness and transverse coherence compared to third-generation storage rings, as well as distinctly different temporal properties.

 

slides icon

Slides

 
TH5PFP078 Low-Frequency Time Domain Numerical Studies of Transition Radiation in a Cylindrical Waveguide 3383
 
  • X. Sun, G. Decker
    ANL, Argonne
 
 

Transition radiation is frequently used to determine the time profile of a bunched relativistic particle beam. Emphasis is usually given to diagnostics sensitive to wavelengths in the infrared-to-optical portion of the spectrum. In this study, CST Particle Studio simulations are used to make quantitative statements regarding the low-frequency (DC to microwave) behavior of coherent transition radiation from a mirror inclined at 45 degrees relative to the particle beam trajectory. A moving Gaussian bunch confined within a cylindrical beam pipe is modeled. Simulation results are presented.

 
TH5RFP004 First Full-Sector Closed-Loop Operational Experience for the FPGA-Based Broadband Beam Position Monitor at the APS 3441
 
  • W.E. Norum, H. Bui, G. Decker, L. Emery, R. Laird, F. Lenkszus, R.M. Lill, H. Shang
    ANL, Argonne
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.


The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for eleven years. The monopulse radio frequency (rf) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field-programmable gate array (FPGA) that performs the signal processing. The new system has been installed and commissioned in a full sector of the APS. This paper presents the results of testing of the beam position monitor which is now fully integrated into the storage ring orbit control and fast feedback systems.

 
TH5RFP016 Comparison of RF BPM Receivers for NSLS-II Project 3476
 
  • I. Pinayev, O. Singh
    BNL, Upton, Long Island, New York
  • G. Decker
    ANL, Argonne
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contracts DE-AC02-98CH10886 and DE-AC02-06CH11357.


The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies. The details of the program and preliminary results are presented.