Paper | Title | Page |
---|---|---|
WE4GRC02 | Measurement of Electron Cloud Development in the Fermilab Main Injector Using Microwave Transmission | 1967 |
|
||
The production of an Electron Cloud poses stability issues for future high intensity running of the Fermilab Main Injector. Recent experiements have shown the presense of the electron cloud can be detected by the phase shift of a TE wave propagated along the beampipe. This technique has been employed to provide very sensitive measurements of the electron cloud development in the Fermilab Main Injector. |
||
|
||
TH5RFP071 | The TE Wave Transmission Method for Electron Cloud Measurements at Cesr-TA | 3606 |
|
||
Funding: Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We report on the optimization of TE Wave measurements at the Cesr-TA ring at Cornell University. The CESR storage ring is currently used as a testbed for technologies to be used in the damping rings of the International Linear Collider. The TE Wave measurement method utilizes capacitive buttons (BPMs) in the ring to excite and detect a propagating electromagnetic wave corresponding to the beampipe's fundamental TE mode. The presence of low-energy electrons along the wave path changes its propagation characteristics, which can be detected by analyzing the received signal. By choosing the machine fill pattern (gaps and bunch trains length) it is possible to modulate the density of the electron cloud and derive information on its rise and fall times by observing the detected signal spectrum. The possibility of circulating both electron and positron beams in the ring enabled us to separate the contribution of primary photoelectrons, which are independent on the circulating particle nature, from the transverse resonant mechanism, which can increase the primary electron density many times over and which only takes place with a circulating positron beam. |
||
TH5RFP072 | Remote Synchrotron Light Instrumentation Using Optical Fibers | 3609 |
|
||
Funding: Work supported by the U.S. Department of Energy under Contract No. By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. |
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|