Paper | Title | Page |
---|---|---|
WE1GRC04 | The Potential of Fluidised Powder Target Technology in High Power Accelerator Facilities | 1833 |
|
||
This paper describes the potential of fluidised powdered material for use as a particle production target in high power particle accelerator based facilities. In such facilities a multi-MW proton beam is required to interact with a dense target material in order to produce sub-atomic particles, e.g. neutrons for a neutron source or pions for a so-called conventional neutrino beam, a neutrino factory or a muon collider. Experience indicates that thermal transport, shock wave and radiation damage will limit the efficiency and reliability of facilities utilising solid targets at around 1 MW beam power. Consequently liquid mercury has been adopted as the target technology for the latest neutron facilities SNS and J-SNS at ORNL and Tokai respectively, and is the baseline for a neutrino factory and muon collider. However mercury introduces new problems such as Cavitation Damage Erosion. This paper discusses how a fluidised powder target may combine many of the advantages of a liquid metal with those of a solid, and describes an experimental programme at RAL currently underway to implement this technology. |
||
|
||
WE6RFP032 | Morphology of a Powder Jet as a Target for the Neutrino Factory | 2859 |
|
||
This paper proposes a technology based on fluidized powder which could be employed as a high power target (and beam dump), for example in a future Neutrino Factory or Muon Collider. A fluidized powder target is believed to bring together some advantages of both the solid and liquid phase whilst avoiding some of their drawbacks. The current Neutrino Factory and Muon Collider proposals require the use of a high Z target material withstanding beam ionisation heating of around 1 MW. The article proposes to use a dense tungsten powder jet as an alternative to the baseline open mercury jet for interaction with the proton beam inside the high field capture solenoid. The preliminary experimental results on the production and on the characteristics of a dense horizontal tungsten powder jet are presented. The morphology of the jet is analysed and presented as a function of the driving parameters (e.g. pneumatic supply pressure, boundary conditions of the jet, etc.). A test rig was developed to investigate the reliability of lean and dense phase pneumatic conveying of tungsten powder and the results of such experiments are discussed in the paper. |