A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Couprie, M.-E.

Paper Title Page
TU6PFP040 A Compact Ring for Thom X-Ray Source 1372
 
  • C. Bruni, Y. Fedala, J. Haissinski, M. Lacroix, B. Mouton, R. Roux, A. Variola, Z.F. Zomer
    LAL, Orsay
  • E. Bressi
    CNAO Foundation, Milan
  • P. Brunelle, M.-E. Couprie, J.-C. Denard, N. Guillotin, P. Lebasque, A. Loulergue, P. Marchand, F. Marteau, R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  • P. Gladkikh
    NSC/KIPT, Kharkov
 
 

The goal of X-ray sources based on Compton back scattering processes is to develop a compact device, which could produce an intense flux of monochromatic X-rays. Compton back-scattering resuls from collisions between laser pulses and relativistic electron bunches. Due to the relative low value of the Compton cross section, a high charge electron beam, a low emittance and a high focusing at the interaction point are required for the electron beam. In addition, the X-ray flux is related to the characteristics of the electron beam, which are themselves dynamically affected by the Compton interaction. One possible configuration is to inject frequently into a storage ring with a low emittance linear accelerator without waiting for the synchrotron equilibrium. As a consequence, the optics should be designed taking into account the characteristics of the electron beam from the linear accelerator. The accelerator ring design for a 50 MeV electron beam, aiming at producing a flux higher than 1013 ph/s, will be presented.

 
WE5RFP021 Operation and Performance Upgrade of the SOLEIL Storage Ring 2312
 
  • J.-M. Filhol, J.C. Besson, P. Brunelle, L. Cassinari, M.-E. Couprie, J.-C. Denard, C. Herbeaux, N. Hubert, J.-F. Lamarre, J.-P. Lavieville, P. Lebasque, M.-P. Level, A. Loulergue, P. Marchand, A. Nadji, L.S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
 

After two years of operation, the SOLEIL 3rd generation synchrotron light source is delivering photons to 20 beamlines with a current of 250mA in multibunch or hybrid modes, and 60 mA in 8 bunch mode. The radiation control of the beamline hutches is performed at 300 mA, but recently a 455mA current was stored during machine tests following the installation of the second RF cryomodule. It is foreseen to reach the maximum current of 500mA in the early 2009 and to operate in top-up mode from then on. The new transverse feedback loop has enabled to improve the performance of the single bunch and multibunch beams. The beam position stability is in the range of few micrometers thanks to the efficiency of the fast orbit feedback. Fifteen insertion devices are now installed in the storage ring, ten others are under construction, and a cryogenic undulator is under development. A big effort is being taken in order to compensate the effects of these insertion devices on the machine performance. The good operation performance achieved in 2007 (first year) has been improved in 2008 during which ~4 000 hours will have been delivered to the users with a 95.5% availability and a 30 hours MTBF.

 
WE5RFP080 Development and Installation of Insertion Devices at SOLEIL 2453
 
  • F. Marteau, C. Benabderrahmane, P. Berteaud, F. Briquez, P. Brunelle, L. Chapuis, M.-E. Couprie, T.K. El Ajjouri, J.-M. Filhol, C.A. Kitegi, O. Marcouillé, M. Massal, A. Nadji, L.S. Nadolski, R. Nagaoka, K. Tavakoli, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette
  • O.V. Chubar
    BNL, Upton, Long Island, New York
 
 

SOLEIL storage ring presents a very high fraction of the total circumference dedicated to accommodate insertion devices. Over the presently planned 25 insertion devices presenting a large variety of systems, 15 have been already installed and commissioned by the end of 2008. The UV-VUV region is covered with electromagnetic devices (one HU640 and 3 HU256), offering tuneable polarisations. An electromagnet/permanent magnet undulator using copper sheets as coils for fast switching of the helicity is under construction. 13 APPLE-II types undulators, with period ranging from 80 down to 36 mm, provide photons in the 0.1-10 keV region, some of them featuring tapering or quasi-periodicity. 5 U20 in-vacuum undulators cover the 3-30 keV range whereas an in-vacuum wiggler, with magnetic forces compensation via adequate springs is designed to cover the 10-50 keV spectral domain. R&D on cryogenic in-vacuum undulator has also been launched. A magnetic chicane using permanent magnet dipoles has also been designed in order to accommodate two canted undulators on the same straight section. The processes for optimizing the insertion devices and their achieved performances will be described.

 
WE5RFP081 Development of an Electromagnetic/Permanent Magnet Helical Undulator for Fast Polarisation Switching 2456
 
  • F. Marteau, P. Berteaud, F. Bouvet, L. Chapuis, M.-E. Couprie, J.P. Daguerre, J.-M. Filhol, A. Mary, K. Tavakoli
    SOLEIL, Gif-sur-Yvette
 
 

A new electromagnetic/permanent magnets helical undulator, with a 65 mm magnetic period is under development at SOLEIL for providing a rapid switching of the photon polarization required to perform dichroïsm experiments. The vertical field will be produced by coils fed by a fast switching power supply, with a maximum current of 350 A and a polarity switching time shorter than 100ms. The coils consist of copper sheets cut by water jet method. 26 layers of copper will be stacked together while 10 of them will be water cooled. The current-regulated power supply should be able to operate in the 4 quadrants with a 50 ppm current resolution over the full scale. The design of this home made power supply will be described. The horizontal field will be generated by NdFeB permanent magnets. The design vertical and horizontal peak field values in the helical configuration are 0.24 T at the minimum 15.5 mm gap. The magnetic design and the correction scheme will be described. A prototype was built to characterise and validate the technical choices, and the results will be discussed. The efficiency of the cooling system and the results of the magnetic measurements will be presented.

 
TH4PBC05 Recent Results of the SPARC FEL Experiments 3178
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, M. Benfatto, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, A. Marcelli, A. Marinelli, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salières, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani, A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, M. Del Franco, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G.L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed.

 

slides icon

Slides