A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Corlett, J.N.

Paper Title Page
MO6RFP077 Status of the LBNL Normal-Conducting CW VHF Photo-Injector 551
 
  • F. Sannibale, K.M. Baptiste, J.N. Corlett, T.M. Huang, S. Kwiatkowski, D. Li, J. Qiang, J.W. Staples, R.P. Wells, L. Yang, A. Zholents
    LBNL, Berkeley, California
  • J.W. McKenzie
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231


A high-brightness high-repetition rate photo-injector based on a normal conducting 187 MHz RF cavity design capable of CW operation is under construction at the Lawrence Berkeley National Laboratory. A cathode field of ~20 MV/m accelerates electron bunches to 750 keV with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. A vacuum load-lock mechanism is included and a 10 picoTorr range vacuum capability allows most types of photocathodes to operate at a MHz repetition rate with present laser technology. The status of the project is presented.

 
TU5RFP038 Performance Requirements and Metrics for Future X-Ray Sources 1177
 
  • J.N. Corlett
    LBNL, Berkeley, California
  • R.O. Hettel
    SLAC, Menlo Park, California
 
 

Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 (LBNL) and DE-AC02-76SF00515 (SLAC).


The future directions of x-ray science and the photon beam properties required to pursue them were recently evaluated by a joint LBNL–SLAC study group*. As identified by this group, essential x-ray capabilities for light sources in the future (but not necessarily from any single source) include: 1) x-ray pulses with Fourier-transform-limit time structure from the picosecond to attosecond regime, synchronized with conventional lasers, and with control of longitudinal pulse shape, amplitude and phase; 2) full transverse coherence; 3) high average flux and brightness; 4) energy tunability in soft and hard x-ray regimes, and polarization control. Metrics characterizing source properties include not only average and peak spectral brightness but also the photons per pulse and repetition rate as a function of pulse length, and the proximity to transform-limited dimensions in six dimensional phase space. We compare the projected performance of various advanced x-ray source types, with respect to these metrics and discuss their advantages and disadvantages. We briefly discuss the technology challenges for future sources and the areas of R&D required to address them.


*R. Falcone, J. Stohr et al., “Scientific Needs for Future X-Ray Sources in the U.S. - A White Paper”, SLAC-R-910, LBNL-1090E, October 2008.

 
WE5PFP050 Preparations for Assembly of the International ERL Cryomodule at Daresbury Laboratory 2113
 
  • P.A. McIntosh, R. Bate, C.D. Beard, D.M. Dykes, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S.A. Belomestnykh, M. Liepe, H. Padamsee, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York
  • A. Büchner, F.G. Gabriel, P. Michel
    FZD, Dresden
  • M.A. Cordwell, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California
  • T. Kimura, T.I. Smith
    Stanford University, Stanford, California
  • D. Proch, J.K. Sekutowicz
    DESY, Hamburg
  • A. Quigley
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities, has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised for final cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.

 
TH5RFP029 Design and Implementation of CESRTA Superconducting Wiggler Beampipes with Thin Retarding Field Analyzers 3507
 
  • Y. Li, M.G. Billing, S. Greenwald, T.I. O'Connell, M.A. Palmer, J.P. Sikora, E.N. Smith, K.W. Smolenski
    CLASSE, Ithaca, New York
  • J.N. Corlett, R. Kraft, D.V. Munson, D.W. Plate, A.W. Rawlins
    LBNL, Berkeley, California
  • K. Kanazawa, Y. Suetsugu
    KEK, Ibaraki
  • M.T.F. Pivi
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program


Wiggler magnets are one of the key components in the ILC Damping Ring. It is critical to the ILCDR GDE to understand electron cloud (EC) growth and patterns, and to develop EC suppression techniques in the wiggler beampipes. The CESR-c superconducting wigglers, closely matching the parameters of the ILCDR wigglers, serve as unique testing vehicles. As part of the CesrTA project, we replaced the copper beampipes of two SCWs with EC diagnostic beampipes, where one of the beampipes is uncoated and the second is coated with a thin TiN film. Each of the EC diagnostic beampipes is equipped with three retarding field analyzers (RFAs) at strategic longitudinal locations in the wiggler field. Each of the RFAs has 12-fold segmentation to measure the horizontal EC density distribution. To maintain sufficient vertical beam aperture and to fit within the SCW warm bore, a thin style of RFA (with a thickness of 2.5 mm) has been developed and deployed. These SCWs with RFA-equipped beampipe have been installed and successfully operated in the re-configured CesrTA vacuum system. This paper describes the design and the construction of the RFA-equipped SCW beampipes and operational experience.

 
FR1RAI02 The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development 4200
 
  • M.A. Palmer, J.P. Alexander, M.G. Billing, J.R. Calvey, S.S. Chapman, G.W. Codner, C.J. Conolly, J.A. Crittenden, J. Dobbins, G. Dugan, E. Fontes, M.J. Forster, R.E. Gallagher, S.W. Gray, S. Greenwald, D.L. Hartill, W.H. Hopkins, J. Kandaswamy, D.L. Kreinick, Y. Li, X. Liu, J.A. Livezey, A. Lyndaker, V. Medjidzade, R.E. Meller, S.B. Peck, D.P. Peterson, M.C. Rendina, P. Revesz, D.H. Rice, N.T. Rider, D. L. Rubin, D. Sagan, J.J. Savino, R.D. Seeley, J.W. Sexton, J.P. Shanks, J.P. Sikora, K.W. Smolenski, C.R. Strohman, A.B. Temnykh, M. Tigner, S. Vishniakou, W.S. Whitney, T. Wilksen, H.A. Williams
    CLASSE, Ithaca, New York
  • J.M. Byrd, C.M. Celata, J.N. Corlett, S. De Santis, M.A. Furman, A. Jackson, R. Kraft, D.V. Munson, G. Penn, D.W. Plate, A.W. Rawlins, M. Venturini, M.S. Zisman
    LBNL, Berkeley, California
  • J.W. Flanagan, P. Jain, K. Kanazawa, K. Ohmi, H. Sakai, K. Shibata, Y. Suetsugu
    KEK, Ibaraki
  • K.C. Harkay
    ANL, Argonne
  • Y. He, M.C. Ross, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Kharakh, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • E.N. Smith
    Cornell University, Ithaca, New York
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program.


In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained.

 

slides icon

Slides