A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cooke, S.J.

Paper Title Page
TU4RAC03 Modeling and Design of High-Power Inductive Output Tubes 767
 
  • E.L. Wright, K.T. Nguyen
    Beam-Wave Research, Inc., Union City
  • I.A. Chernyavskiy, J.J. Petillo
    SAIC, Burlington, Massachusetts
  • S.J. Cooke, B. Levush, J.A. Pasour
    NRL, Washington, DC
  • J.F. DeFord, B. Held
    STAAR/AWR Corporation, Mequon
 
 

Funding: Research funded by the Office of Naval Research and Naval Research Laboratory.


The accelerator community is making the transition to IOT technology for a number of high-power UHF and L-band applications as a result their inherent benefits. Scientists, funded by the Office of Naval Research and Naval Research Laboratory, are investigating the physics of the beam-wave interaction of the IOT. The time-domain electrostatic PIC code MICHELLE, in conjunction with the Analyst® suite of electromagnetic codes, were used to model the cathode-grid-anode structure that comprise the input cavity. Our investigation has led to the discovery of a delay mechanism responsible for intra-bunch charge formation, as evidenced by IOT X-ray generation with energies significantly higher than the cathode accelerating potential, increasing with RF output power. Time-domain PIC results of this effect will be shown. We will also present simulation results of the large-signal beam wave interaction in the output cavity using the code TESLA. Examples of single beam and multiple-beam IOTs will also be shown.

 

slides icon

Slides