A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Clarke, C.I.

Paper Title Page
WE6PFP077 Beam Test Results with the FONT4 ILC Prototype Intra-Train Beam Feedback System 2676
 
  • P. Burrows, R. Apsimon, C.I. Clarke, B. Constance, H. Dabiri Khah, A.F. Hartin, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • G.B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

We present the results of beam tests of the FONT4 ILC prototype intra-train beam feedback system. The system comprises a stripline BPM, a fast analogue BPM signal processor, a custom FPGA-based digital feedback board, a high-power fast-response drive amplifier, and a stripline kicker. The hardware was deployed at the Accelerator Test Facility at KEK. Trains comprising three electron bunches were extracted from the ATF damping ring, with bunch spacing c. 150ns. The feedback loop was closed by measuring the position of bunch 1 and correcting bunches 2 and 3. We report the performance of the feedback, including gain studies, the correction dynamic range, latency measurement, and quality of the beam position correction. The system achieved micron-level bunch stabilisation with a latency of c. 140ns.

 
TH6REP074 Development of a Fast Micron-Resolution Beam Position Monitor Signal Processor for Linear Collider Beam-Based Feedback Systems 4126
 
  • P. Burrows, R. Apsimon, C.I. Clarke, B. Constance, H. Dabiri Khah, A.F. Hartin, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • G.B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

We present the design of prototype fast beam position monitor (BPM) signal processors for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron is obtained.